Abstract
Finite automata determinization is a critical operation for numerous practical applications such as regular expression search. Algorithms have to deal with the possible blow up of determinization. There exist solutions to control the space and time complexity like the so called “on the fly” determinization. Another solution consists in performing brute force determinization, which is robust and technically fast, although a priori its space complexity constitutes a weakness. However, one can reduce this complexity by perfoming a partial brute force determinization. This paper provides optimizations that consist in detecting classes of unreachable states and transitions of the subset automaton, which leads in average to an exponential reduction of the complexity of brute force and partial brute force determinization.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bairoch, A., Apweiler, R.: The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research 28(1), 45–48 (2000)
Campeanu, C., Paun, A., Yu, S.: An efficient algorithm for constructing minimal cover automata for finite languages. Int. Journal of Foundations of ComputerScience 13(1), 83–97 (2002)
Champarnaud, J.-M.: Subset construction complexity for homogeneous automata, position automata and ZPC-structures. Theoret. Comp. Sc. 267(1-2), 17–34 (2001)
Champarnaud, J.-M., Coulon, F., Paranthoën, T.: Compact and fast algorithms for safe regular expression search. Intern. J. of Computer. Math. 81(4), 383–401 (2004)
Champarnaud, J.-M., Hansel, G., Paranthoën, T., Ziadi, D.: Nfas random generation models. In: Proceedings of DCFS (2002)
Coulon, F.: CCP software, http://www.univ-rouen.fr/LIFAR/aia/ccp.html
Friedl, J.E.F.: Mastering Regular Expressions, 2nd edn. O’Reilly, Sebastopol (2002)
Glenn, J., Gasarch, W.I.: Implementing WS1S via finite automata: Performance issues. In: Raymond, D.R., Yu, S., Wood, D. (eds.) WIA 1996. LNCS, vol. 1260, pp. 75–86. Springer, Heidelberg (1997)
Glushkov, V.-M.: The abstract theory of automata. Russian Mathematical Surveys 16, 1–53 (1961)
Johnson, J.H., Wood, D.: Instruction computation in subset construction. In: Raymond, D.R., Yu, S., Wood, D. (eds.) WIA 1996. LNCS, vol. 1260, pp. 64–71. Springer, Heidelberg (1997)
Navarro, G., Raffinot, M.: Compact DFA representation for fast regular expression search. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 1–12. Springer, Heidelberg (2001)
Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings – Practical on-line search algorithms for texts and biological sequences. Cambridge University Press, Cambridge (2002) ISBN 0-521-81307-7
Wu, S., Manber, U.: Fast text searching algorithm allowing errors. CACM 35(10), 83–91 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Champarnaud, JM., Coulon, F., Paranthoën, T. (2005). Brute Force Determinization of NFAs by Means of State Covers. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds) Implementation and Application of Automata. CIAA 2004. Lecture Notes in Computer Science, vol 3317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30500-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-30500-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24318-2
Online ISBN: 978-3-540-30500-2
eBook Packages: Computer ScienceComputer Science (R0)