Skip to main content

Compiler-Assisted Software DSM on a WAN Cluster

  • Conference paper
Parallel and Distributed Computing: Applications and Technologies (PDCAT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3320))

  • 996 Accesses

Abstract

Recent progress in high-speed and high-bandwidth backbone networks has led to computer clusters over wide-area network (WAN), called global computing systems.

The shared-memory programming model makes it much easier for programmers to write parallel applications on global computing systems than the message-passing model. The question is whether or not shared-memory parallel programs can run on global computing systems efficiently.

This paper proposes techniques for optimizing software distributed shared memory (S-DSM) on global computing systems. Both the compiler optimization and the run-time optimization make the latency of remote-memory access small and provide scalable shared memory.

These techniques for optimizing S-DSM system have been implemented, and they are evaluated through the experiments under pseudo WANenvironment using Comet delay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.comet-can.jp/Applications/CometDelay/

  2. Arantes, L., Sens, P., Folliot, B.: The impact of caching in a loosely-coupled clustered software dsm system. In: Proc. of 2000 Conference on Cluster Computing, pp. 27–34 (2000)

    Google Scholar 

  3. Boyle, J., Butler, R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson, J., Stevens, R.: Portable Programs for Parallel Processors. Holt, Rinehart and Winston, Inc. (1987)

    Google Scholar 

  4. Burke, M.: An Interval-Based Approach to Exhaustive and Incremental Interprocedural Data-Flow Analysis. ACM Transactions on Programming Languages and Systems 12(3), 341–395 (1990)

    Article  Google Scholar 

  5. Carter, J.B., Bennett, J.K., Zwaenepoel, W.: Implementation and performance of Munin. In: Proc. of 13th ACM Symposium on Operating System Principles (October 1991)

    Google Scholar 

  6. Chen, D., Dwarkadas, S., Parthasarathy, S., Pinheiro, E., Scott, M.L.: Interweave: A middleware system for distributed shared state. In: Languages, Compilers, and Run-Time Systems for Scalable Computers, pp. 207–220 (2000)

    Google Scholar 

  7. Cocke, J.: Global Common Subexpression Elimination. In: Proc. of a Symposium on Compiler Optimization, SIGPLAN Notices, vol. 5(7), pp. 20–24 (1970)

    Google Scholar 

  8. Emami, M., Ghiya, R., Hendren, L.J.: Context-Sensitive Interprocedural Points-to Analysis in the Presence of Function Pointers. In: Proc. of 1994 Conf. on PLDI, pp. 242–256 (1994)

    Google Scholar 

  9. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  10. Globus Project, http://www.globus.org

  11. Iftode, L., Dubnicki, C., Felten, E.W., Li, K.: Improving Release-Consistent Shared Virtual Memory using Automatic Update. In: Proc. of the 2nd HPCA (February 1996)

    Google Scholar 

  12. Inagaki, T., Niwa, J., Matsumoto, T., Hiraki, K.: Supporting Software Distributed Shared Memory with a Optimizing Compiler. In: Proc. of the 1998 ICPP, August 1998, pp. 225–234 (1998)

    Google Scholar 

  13. Keleher, P., Cox, A.L., Dwarkadas, S., Zwaenepoel, W.: Treadmarks: Distributed Shared Memory on Standard Workstations and Operating Systems. In: Proc. of the Winter 1994 USENIX Conf., January 1994, pp. 115–131 (1994)

    Google Scholar 

  14. Keleher, P., Cox, A.L., Zwaenepoel, W.: Lazy Release Consistency for Software Distributed Shared Memory. In: Proc. of the 19th ISCA, May 1992, pp. 13–21 (1992)

    Google Scholar 

  15. Li, K.: IVY: A Shared Virtual Memory System for Parallel Computing. In: Proc. of the 1988 ICPP, August 1988, pp. 94–101 (1988)

    Google Scholar 

  16. Luk, C.-K., Mowry, T.C.: Compiler-based prefetching for recursive data structures. In: Architectural Support for Programming Languages and Operating Systems, pp. 222–233 (1996)

    Google Scholar 

  17. Matsumoto, T., Hiraki, K.: Memory-Based Communication Facilities and Asymmetric Distributed Shared Memory. In: Proc. of the 1997 International Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems, pp. 30–39. IEEE Computer Society, Los Alamitos (1998)

    Chapter  Google Scholar 

  18. Matsumoto, T., Niwa, J., Hiraki, K.: Compiler-Assisted Distributed Shared Memory Schemes Using Memory-Based Communication Facilities. In: Proc. of the 1998 PDPTA, July 1998, vol. 2, pp. 875–882 (1998)

    Google Scholar 

  19. Morel, E., Renvoise, C.: Global Optimization by Suppression of Partial Redundancies. Communications of the ACM 22(2), 96–103 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ninf Project, http://ninf.apgrid.org

  21. Niwa, J., Inagaki, T., Matsumoto, T., Hiraki, K.: Efficient Implementation of Software Release Consistency on Asymmetric Distributed Shared Memory. In: Proc. of the 1997 ISPAN, December 1997, pp. 198–201 (1997)

    Google Scholar 

  22. Niwa, J., Matsumoto, T., Hiraki, K.: Comparative Study of Page-based and Segment-based Software DSM through Compiler Optimization. In: Proc. of 2000 International Conference on Supercomputing, May 2000, pp. 284–295 (2000)

    Google Scholar 

  23. Radović, Z., Hagersten, E.: Dszoom – low latency software-based shared memory. Technical Report 2001:03, Parallel and Scientific Computing Institute (PSCI), Sweden (April 2001)

    Google Scholar 

  24. Scales, D.J., Gharachorloo, K., Thekkath, C.A.: Shasta: A Low Overhead, Software-Only Approach for Supporting Fine-Grain Shared Memory. In: Proc. of ASPLOS-VII, October 1996, pp. 174–185 (1996)

    Google Scholar 

  25. Stets, R., Dwarkadas, S., Hardavellas, N., Hunt, G.C., Kontothanassis, L.I., Parthasarathy, S., Scott, M.L.: Cashmere-2l: Software coherent shared memory on a clustered remote-write network. In: Symposium on Operating Systems Principles, pp. 170–183 (1997)

    Google Scholar 

  26. Wilson, R.P.: Efficient Context-Sensitive Pointer Analysis for C Programs. PhD thesis, Stanford University (December 1997)

    Google Scholar 

  27. Wilson, R.P., Lam, M.S.: Efficient Context-Sensitive Pointer Analysis for C Programs. In: Proc. of 1995 Conf. on PLDI, June 1995, pp. 1–12 (1995)

    Google Scholar 

  28. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs: Characterization and Methodological Considerations. In: Proc. of the 22nd ISCA, June 1995, pp. 24–36 (1995)

    Google Scholar 

  29. Zhou, Y., Iftode, L., Li, K.: Performance Evaluation of Two Home-Based Lazy Release Consistency Protocols for Shared Virtual Memory Systems. In: Proc. of the 2nd Symp. on OSDI (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niwa, J. (2004). Compiler-Assisted Software DSM on a WAN Cluster. In: Liew, KM., Shen, H., See, S., Cai, W., Fan, P., Horiguchi, S. (eds) Parallel and Distributed Computing: Applications and Technologies. PDCAT 2004. Lecture Notes in Computer Science, vol 3320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30501-9_161

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30501-9_161

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24013-6

  • Online ISBN: 978-3-540-30501-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics