Skip to main content

Equivalence Between Regular n-G-Maps and n-Surfaces

  • Conference paper
Combinatorial Image Analysis (IWCIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3322))

Included in the following conference series:

  • 1177 Accesses

Abstract

Many combinatorial structures have been designed to represent the topology of space subdivisions and images. We focus here on two particular models, namely the n-G-maps used in geometric modeling and computational geometry and the n-surfaces used in discrete imagery. We show that a subclass of n-G-maps is equivalent to n-surfaces. We exhibit a local property characterising this subclass, which is easy to check algorithmatically. Finally, the proofs being constructive, we show how to switch from one representation to another effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alayrangues, S., Lachaud, J.-O.: Equivalence Between Order and Cell Complex Representations. In: Proc. Computer Vision Winter Workshop, CVWW 2002 (2002)

    Google Scholar 

  2. Alayrangues, S., Daragon, X., Lachaud, J.-O., Lienhardt, P.: Equivalence between Regular n-G-maps and n-surfaces, Research Report, http://www.labri.fr/Labri/Publications/Publis-fr.htm

  3. Bertrand, G.: New Notions for Discrete Geometry. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, p. 218. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Bertrand, G.: A Model for Digital Topology. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, p. 229. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Björner, A.: Topological methods. In: Handbook of combinatorics, vol. 2. MIT Press, Cambridge (1995)

    Google Scholar 

  6. Brisson, E.: Representing Geometric Structures in d Dimensions: Topology and Order. In: Proceedings of the Fifth Annual Symposium on Computational Geometry (1989)

    Google Scholar 

  7. Brun, L., Kropatsch, W.: Contraction Kernels and Combinatorial Maps. In: 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition (2001)

    Google Scholar 

  8. Daragon, X., Couprie, M., Bertrand, G.: New “marching-cubes-like” algorithm for Alexandroff-Khalimsky spaces. In: Proc. of SPIE: Vision Geometry, vol. XI (2002)

    Google Scholar 

  9. Daragon, X., Couprie, M., Bertrand, G.: Discrete Frontiers. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 236–245. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Edelsbrunner, H.: Algorithms in combinatorial geometry. Springer-Verlag New York, Inc. (1987)

    Google Scholar 

  11. Elter, H.: Etude de structures combinatoires pour la representation de complexes cellulaires, Universit Louis Pasteur, Strasbourg, France (1994)

    Google Scholar 

  12. Evako, A.V., Kopperman, R., Mukhin, Y.V.: Dimensional properties of graphs and digital spaces. Journal of Mathematical Imaging and Vision (1996)

    Google Scholar 

  13. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  14. Lienhardt, P.: Subdivisions of n-dimensional spaces and n-dimensional generalized maps. In: Proc. 5th Annual ACM Symp. on Computational Geometry (1989)

    Google Scholar 

  15. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Computer-Aided Design (1991)

    Google Scholar 

  16. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal of Computational Geometry and Applications (1994)

    Google Scholar 

  17. May, P.: Simplicial objects in algebraic topology, von Nostrand (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alayrangues, S., Daragon, X., Lachaud, JO., Lienhardt, P. (2004). Equivalence Between Regular n-G-Maps and n-Surfaces. In: Klette, R., Žunić, J. (eds) Combinatorial Image Analysis. IWCIA 2004. Lecture Notes in Computer Science, vol 3322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30503-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30503-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23942-0

  • Online ISBN: 978-3-540-30503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics