Skip to main content

Which Stereo Matching Algorithm for Accurate 3D Face Creation ?

  • Conference paper
Combinatorial Image Analysis (IWCIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3322))

Included in the following conference series:

  • 1196 Accesses

Abstract

This paper compares the efficiency of several stereo matching algorithms in reconstructing 3D faces from both real and synthetic stereo pairs. The stereo image acquisition system setup and the creation of a face disparity map benchmark image are detailed. Ground truth is build by visual matching of corresponding nodes of a dense colour grid projected onto the faces. This experiment was also performed on a human face model created using OpenGL with mapped texture to create as perfect as possible a set for evaluation, instead of real human faces like our previous experiments. Performance of the algorithms is measured by deviations of the reconstructed surfaces from a ground truth prototype. This experiment shows that contrary to expectations, there is seemingly very little difference between the currently most known stereo algorithms in the case of the human face reconstruction. It is shown that by combining the most efficient but slow graph-cut algorithm with fast dynamic programming, more accurate reconstruction results can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, Q., Zhang, H., Riegeland, T., Hundt, E., Xu, G., Zhu, Z.: Creating animatable MPEG4 face. In: International Conference on Augmented Virtual Environments and Three Dimensional Imaging, Mykonos, Greece (2001)

    Google Scholar 

  2. Petajan, E.D., Bischoff, B., Bodoff, D., Brooke, N.M.: An improved automatic lipreading system to enhance speech recognition. In: CHI 1988, pp. 19–25 (1988)

    Google Scholar 

  3. Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real–time combined 2D+3D active appearance models. IEEE International Conference on Computer Vision and Pattern Recognition (June 2004)

    Google Scholar 

  4. Faugeras, O., Hotz, B., Mathieu, H., Viéville, T., Zhang, Z., Fua, P., Théron, E., Moll, L., Berry, G., Vuillemin, J., Bertin, P., Proy, C.: Real time correlation-based stereo: algorithm, implementatinos and applications. Technical Report 2013, Institut National De Recherche en Informatique et en Automatique (INRIA), 06902 Sophia Antipolis, France (1993)

    Google Scholar 

  5. Leclercq, P., Morris, J.: Robustness to noise of stereo matching. In: IEEE Computer Society (ed.) Proceedings of the International Conference on Image Analysis and Processing (ICIAP 2003), Mantova, Italy, September 2003, pp. 606–611 (2003)

    Google Scholar 

  6. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. LNCS, vol. 800, pp. 151–158. Springer, Heidelberg (1994)

    Google Scholar 

  7. Chen, Q., Medioni, G.: Building 3-D human face models from two photographs. Journal of VSLI Signal Processing, 127–140 (2001)

    Google Scholar 

  8. Barnard, S.T., Fischler, M.A.: Computational stereo. Surveys 14, 553–572 (1982)

    Article  Google Scholar 

  9. Gimel’farb, G.: Binocular stereo by maximizing the likelihood ratio relative to a random terrain. In: Klette, R., Peleg, S., Sommer, G. (eds.) RobVis 2001. LNCS, vol. 1998, pp. 201–208. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Roy, S., Cox, I.J.: A maximum-flow formulation of the n-camera stereo correspondence problem. In: IEEE Proceedings of International Conference on Computer Vision (ICCV1998), Bombay (1998)

    Google Scholar 

  11. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: Proc. 7th Int. Conf. Computer Vision (ICCV 1999), Kerkyra, Corfu, Greece, September 20–25, pp. 377–384. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  12. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: Computer Vision and Pattern Recognition Conference (CVPR 1998) (June 1998)

    Google Scholar 

  13. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: International Conference on Computer Vision (ICCV 2001) (July 2001)

    Google Scholar 

  14. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Chan, M., Chen, C.F., Barton, G., Delmas, P., Gimel’farb, G., Leclercq, P., Fisher, T.: A strategy for 3D face analysis and synthesis. Image and Vision Computing New Zealand, 384–389 (2003)

    Google Scholar 

  16. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47, 7–42 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leclercq, P., Liu, J., Woodward, A., Delmas, P. (2004). Which Stereo Matching Algorithm for Accurate 3D Face Creation ?. In: Klette, R., Žunić, J. (eds) Combinatorial Image Analysis. IWCIA 2004. Lecture Notes in Computer Science, vol 3322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30503-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30503-3_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23942-0

  • Online ISBN: 978-3-540-30503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics