Abstract
Microarray experiments are used to perform gene expression profiling on a large scale. The focus of this study is on the efficiency of statistical design for single factor cDNA two-color microarray experiments. Relative efficiencies of proposed designs in Yang ([13]) are studied within the framework of incomplete block designs as well as row-column designs. Such efficiencies are investigated under fixed and mixed analysis of variance models. Furthermore, a real data analysis is conducted.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Black, M., Doerge, R.: Calculation of the minimum number of replicate spots required for detection of significant gene expression fold change in microarray. Bioinformatics 18(12), 1609–1616 (2002)
Cui, X., Kerr, M.K., Churchill, G.: Data transformations for cDNA microarray data (2002), http://www.jax.org/research/churchill/pubs/index.html
Derisi, J.L., Iyer, V.R., Brown, P.O.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997)
Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97, 77–87 (2002)
Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences 25, 14863–14868 (1998)
John, J.A., Williams, E.R.: Cyclic and Computer Generated Designs. Chapman and Hall, London (1995)
Kerr, M., Churchill, G.: Experimental design for gene expression microarrays. Biostatistics 2, 183–201 (2001)
Kohane, I.S., Kho, A.T., Butte, A.J.: Microarrays for an Integrative Genomics. The MIT Press, Cambridge (2003)
Sebastiani, P., Gussoni, E., Kohane, I.S., Ramoni, M.F.: Statistical Challenges in Functional Genomics (with discussions). Statistical Science 18, 33–70 (2003)
Shah, K.R., Sinha, B.K.: Theory of Optimal Designs. Lecture notes in statistics. Springer, Heidelberg (1989)
Smyth, G.K., Yang, Y.-H., Speed, T.P.: Statistical issues in microarray data analysis. In: Brownstein, M.J., Khodursky, A.B. (eds.) Functional Genomics: Methods and Protocols. Methods in Molecular Biology, pp. 111–136. Humana Press, Totowa (2002)
Wolfinger, R.D., Gibson, G., Wolfinger, E.D., Bennett, L., Hamadeh, H., Bushel, P., Afshari, C.A., Paules, R.: Assessing gene significance from cDNA Microarray expression data via mixed Models. Journal of Computational Biology 8(6), 625–637 (2001)
Yang, X.: Optimal Design of Single Factor cDNA Microarray Experiments and Mixed Models for Gene Expression Data, Ph.D. dissertation, Department of Statistics, Virginia Tech (2003)
Yang, Y.H., Speed, T.P.: Design issues for cDNA microarray experiments. Nature Reviews 3, 579–588 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, X., Ye, K. (2004). On Efficiency of Experimental Designs for Single Factor cDNA Microarray Experiments. In: Shi, Y., Xu, W., Chen, Z. (eds) Data Mining and Knowledge Management. CASDMKM 2004. Lecture Notes in Computer Science(), vol 3327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30537-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-30537-8_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23987-1
Online ISBN: 978-3-540-30537-8
eBook Packages: Computer ScienceComputer Science (R0)