Abstract
We consider the problem of symbolic reachability analysis of higher-order context-free processes. These models are generalizations of the context-free processes (also called BPA processes) where each process manipulates a data structure which can be seen as a nested stack of stacks. Our main result is that, for any higher-order context-free process, the set of all predecessors of a given regular set of configurations is regular and effectively constructible. This result generalizes the analogous result which is known for level 1 context-free processes. We show that this result holds also in the case of backward reachability analysis under a regular constraint on configurations. As a corollary, we obtain a symbolic model checking algorithm for the temporal logic E( U, X) with regular atomic predicates, i.e., the fragment of CTL restricted to the EU and EX modalities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdulla, P., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with unbounded, lossy fifo channels. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 305–318. Springer, Heidelberg (1998)
Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Heidelberg (2004)
Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of qdds. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172–186. Springer, Heidelberg (1997)
Bouajjani, A.: Languages, rewriting systems, and verification of infinite-state systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 24–39. Springer, Heidelberg (2001)
Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)
Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)
Burkart, O., Caucal, D., Steffen, B.: Bisimulation collapse and the process taxonomy. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 247–262. Springer, Heidelberg (1996)
Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 704–715. Springer, Heidelberg (2002)
Cachat, T.: Higher order pushdown automata, the caucal hierarchy of graphs and parity games. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 556–569. Springer, Heidelberg (2003)
Carayol, A., Wöhrle, S.: The caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)
Caucal, D.: On the regular structure of prefix rewriting. TCS 106, 61–86 (1992)
Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)
Engelfriet, J.: Iterated pushdown automata and complexity classes. In: 15th STOC, pp. 365–373 (1983)
Esparza, J.: Grammars as processes. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 232–247. Springer, Heidelberg (2002)
Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithm for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)
Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-flow analysis. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 14–30. Springer, Heidelberg (1999)
Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, R., Rauhe, T., Sandholm, A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995)
Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 424–435. Springer, Heidelberg (1997)
Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)
Muller, D., Schupp, P.: The theory of ends, pushdown automata, and second-order logic. TCS 37, 51–75 (1985)
Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Universität München (2002)
Walukiewicz, I.: Pushdown processes: Games and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)
Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bouajjani, A., Meyer, A. (2004). Symbolic Reachability Analysis of Higher-Order Context-Free Processes. In: Lodaya, K., Mahajan, M. (eds) FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2004. Lecture Notes in Computer Science, vol 3328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30538-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-30538-5_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24058-7
Online ISBN: 978-3-540-30538-5
eBook Packages: Computer ScienceComputer Science (R0)