Skip to main content

An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix

  • Conference paper
FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2004)

Abstract

We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ε> 0 produces an output X A with (1 − ε)per(A) ≤ X A  ≤ (1 + ε) per (A) for almost all (0-1) matrices A. For any positive constant ε > 0 , and almost all (0-1) matrices the algorithm runs in time O(n 2 ω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(n 3 ω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bollobás, B.: Random Graphs. Academic Press, London (1985)

    Google Scholar 

  2. Chien, S., Rasmussen, L., Sinclair, A.: Clifford algebras and approximating the permanent. In: Proceedings of the 34th ACM Symposium on Theory of Computing, pp. 222–231 (2002)

    Google Scholar 

  3. Frieze, A., Jerrum, M.: An analysis of a Monte-Carlo algorithm for approximating the permanent. Combinatorica, 67–83 (1995)

    Google Scholar 

  4. Godsil, C., Gutman, I.: On the matching polynomial of a graph. Algebraic Methods in Graph Theory, 241–249 (1981)

    Google Scholar 

  5. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM Journal of Computing 18, 1149–1178 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial time approximation algorithm for the permanent of a matrix with non-negative entries. Journal of the ACM 51(4) (2004)

    Google Scholar 

  7. Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science 43, 169–188 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Karmarkar, N., Karp, R., Lipton, R., Lovsáz, L., Luby, M.: A Monte-Carlo algorithm for estimating the permanent. SIAM Journal of Computing 22, 284–293 (1993)

    Article  MATH  Google Scholar 

  9. Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics of Computation 29, 121–136 (1974)

    Article  MathSciNet  Google Scholar 

  10. la Pena, V.D., Giné, E.: Decoupling, from Dependence to Independence. Springer, New York (1999)

    Google Scholar 

  11. Minc, H.: Permanents, Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Company, Reading (1982)

    Google Scholar 

  12. Purdom, P.W.: Tree size by partial backtracking. SIAM Journal on Computing 7(4), 481–491 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rasmussen, L.: Approximating the permanent:A simple approach. Random Structures and Algorithms 5, 349–361 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ryser, H.: Combinatorial Mathematics, The Carus Mathematical Monographs. The Mathematical Association of America, Washington DC (1963)

    Google Scholar 

  15. Stein, C., Karger, D.R.: A new approach to the minimum cut problem. Journal of the ACM 43(4), 601–640 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Valiant, L.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fürer, M., Kasiviswanathan, S.P. (2004). An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix. In: Lodaya, K., Mahajan, M. (eds) FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2004. Lecture Notes in Computer Science, vol 3328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30538-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30538-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24058-7

  • Online ISBN: 978-3-540-30538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics