Skip to main content

Improved Approximation Algorithms for Maximum Graph Partitioning Problems Extended Abstract

  • Conference paper
FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3328))

Abstract

In this paper we improve the analysis of approximation algorithms based on semidefinite programming for the maximum graph partitioning problems MAX-k-CUT, MAX- k -UNCUT, MAX- k -DIRECTED-CUT, MAX -k-DIRECTED-UNCUT, MAX- k -DENSE-SUBGRAPH, and MAX-k-VERTEX-COVER.It was observed by Han, Ye, Zhang (2002) and Halperin, Zwick (2002) that a parameter-driven random hyperplane can lead to better approximation factors than obtained by Goemans and Williamson (1994). Halperin and Zwick could describe the approximation factors by a mathematical optimization problem for the above problems for \(k=\frac{n}{2}\) and found a choice of parameters in a heuristic way. The innovation of this paper is twofold. First, we generalize the algorithm of Halperin and Zwick to cover all cases of k, adding some algorithmic features. The hard work is to show that this leads to a mathematical optimization problem for an optimal choice of parameters. Secondly, as a key-step of this paper we prove that a sub-optimal set of parameters is determined by a linear program. Its optimal solution computed by CPLEX leads to the desired improvements. In this fashion a more systematic analysis of the semidefinite relaxation scheme is obtained which leaves room for further improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ageev, A., Hassin, R., Sviridenko, M.: A 0.5–Approximation Algorithm for MAX DICUT with Given Sizes of Parts. SIAM Journal on Discrete Mathematics 14(2), 246–255 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ageev, A., Sviridenko, M.: Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 17–30. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily Finding a Dense Subgraph. Journal of Algorithms 34, 203–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertsimas, D., Ye, Y.: Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics. In: Handbook of Combinatorial Optimization, vol. 3, pp. 1–19. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  5. Feige, U., Langberg, M.: Approximation Algorithms for Maximization Problems arising in Graph Partitioning. Journal of Algorithms 41, 174–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feige, U., Langberg, M.: The \(\mbox{RPR}^2\) rounding technique for semidefinite programs. In: Proceedings of the 33th Annual ACM Symposium on Theory of Computing, Crete, Greece, pp. 213–224 (2001)

    Google Scholar 

  7. Feige, U., Kortsarz, G., Peleg, D.: The Dense k-Subgraph Problem. Algorithmica 29, 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feige, U., Seltser, M.: On the densest k-subgraph problem, Technical report, Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot (September 1997)

    Google Scholar 

  9. Frieze, A., Jerrum, M.: Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION. Algorithmica 18, 67–81 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Halperin, E., Zwick, U.: A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems. Random Structures and Algorithms 20(3), 382–402 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Han, Q., Ye, Y., Zhang, J.: An Improved Rounding Method and Semidefinite Programming Relaxation for Graph Partition. Mathematical Programming 92(3), 509–535 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mahajan, S., Ramesh, H.: Derandomizing approximation algorithms based on semidefinite programming. SIAM Journal on Computing 28, 1641–1663 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Srivastav, A., Wolf, K.: Finding Dense Subgraphs with Semidefinite Programming. In: Approximation Algorithms for Combinatorial Optimization 1998, pp. 181–191 (1998); Erratum, Mathematisches Seminar, Universität zu Kiel, 1999

    Google Scholar 

  15. Ye, Y.: A.699–approximation algorithm for MAX-Bisection. Mathematical Programming 90(1), 101–111 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ye, Y., Zhang, J.: Approximation of Dense-\( \frac{n}{2} \)-Subgraph and the complement of Min-Bisection, (1999) (unpublished Manuscript)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jäger, G., Srivastav, A. (2004). Improved Approximation Algorithms for Maximum Graph Partitioning Problems Extended Abstract. In: Lodaya, K., Mahajan, M. (eds) FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2004. Lecture Notes in Computer Science, vol 3328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30538-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30538-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24058-7

  • Online ISBN: 978-3-540-30538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics