Skip to main content

Abstract

We consider the problem of determining whether a given set S in \({\mathbb R}^{n}\) is approximately convex, i.e., if there is a convex set \(K \in {\mathbb R}^{n}\) such that the volume of their symmetric difference is at most ε vol(S) for some given ε. When the set is presented only by a membership oracle and a random oracle, we show that the problem can be solved with high probability using poly(n)(c/ε)n oracle calls and computation time. We complement this result with an exponential lower bound for the natural algorithm that tests convexity along “random” lines. We conjecture that a simple 2-dimensional version of this algorithm has polynomial complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45, 653–750 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Parnas, M., Ron, D., Rubinfeld, R.: On testing convexity and submodularity. SIAM J. Comput. 32, 1158–1184 (2003)(electronic )

    Article  MATH  MathSciNet  Google Scholar 

  3. Lovász, L., Vempala, S.: Hit-and-run from a corner. In: STOC 2004, ACM, New York (2004)

    Google Scholar 

  4. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  5. Groemer, H.: On the mean value of the volume of a random polytope in a convex set. Arch. Math (Basel) 25, 86–90 (1974)

    MATH  MathSciNet  Google Scholar 

  6. Bárány, I., Buchta, C.: Random polytopes in a convex polytope, independence of shape, and concentration of vertices. Math. Ann. 297, 467–497 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bárány, I., Füredi, Z.: Computing the volume is difficult. Discrete Comput. Geom. 2, 319–326 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Grundlehren der mathematischen Wissenschaften, vol. 317. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rademacher, L., Vempala, S. (2004). Testing Geometric Convexity. In: Lodaya, K., Mahajan, M. (eds) FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2004. Lecture Notes in Computer Science, vol 3328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30538-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30538-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24058-7

  • Online ISBN: 978-3-540-30538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics