Abstract
For a finite group G to be used in the MOR public key cryptosystem, it is necessary that the discrete logarithm problem(DLP) over the inner automorphism group Inn (G) of G must be computationally hard to solve. In this paper, under the assumption that the special conjugacy problem of G is easy, we show that the complexity of the MOR system over G is about log |G| times larger than that of DLP over G in a generic sense. We also introduce a group-theoretic method, called the group extension, to analyze the MOR cryptosystem. When G is considered as a group extension of H by a simple abelian group, we show that DLP over Inn (G) can be ‘reduced’ to DLP over Inn (H). On the other hand, we show that the reduction from DLP over Inn (G) to DLP over G is also possible for some groups. For example, when G is a nilpotent group, we obtain such a reduction by the central commutator attack.
Chapter PDF
Similar content being viewed by others
References
Curtis, M.L.: Matrix groups. Springer, New York (1979)
Hall, M.: The theory of groups. The Macmillan company, Basingstoke (1959)
Hungerford, T.: Algebra. Springer, Heidelberg (1974)
Maurer, U.: Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 271–281. Springer, Heidelberg (1994)
Maurer, U., Wolf, S.: The Diffie-Hellman protocol. Des. Codes Cryptography 19(2), 147–171 (2000)
Maurer, U., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg (1998)
Paeng, S.: On the security of cryptosystem using automorphism groups. Inf. Process. Lett. 88(6), 293–298 (2003)
Paeng, S., Ha, K., Kim, J., Chee, S., Park, C.: New public key cryptosystem using finite nonabelian groups. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 470–485. Springer, Heidelberg (2001)
Paeng, S., Kwon, D., Ha, K., Kim, J.: Improved public key cryptosystem using finite nonabelian groups, Cryptology ePrint Archive, Report 2001/066, http://eprint.iacr.org/2001/066/
Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Inform. Theory 24, 106–110 (1978)
Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)
Steinberg, R.: Lectures on Chevalley groups. Yale University (1967)
Suzuki, M.: Group theory I. Springer, Heidelberg (1977)
Tobias, C.: Security analysis of the MOR cryptosystem. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 175–186. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, IS., Kim, WH., Kwon, D., Nahm, S., Kwak, NS., Baek, YJ. (2004). On the Security of MOR Public Key Cryptosystem. In: Lee, P.J. (eds) Advances in Cryptology - ASIACRYPT 2004. ASIACRYPT 2004. Lecture Notes in Computer Science, vol 3329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30539-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-30539-2_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23975-8
Online ISBN: 978-3-540-30539-2
eBook Packages: Springer Book Archive