Abstract
We consider the problem of securely computing the Greater Than (GT) predicate and its generalization – securely determining membership in a union of intervals. We approach these problems from the point of view of Q-Conditional Oblivious Transfer (Q-COT), introduced by Di Crescenzo, Ostrovsky and Rajagopalan [4]. Q-COT is an oblivious transfer that occurs iff predicate Q evaluates to true on the parties’ inputs. We are working in the semi-honest model with computationally unbounded receiver.
In this paper, we propose: (i) a stronger, simple and intuitive definition of COT, which we call strong COT, or Q-SCOT. (ii) A simpler and more efficient one-round protocol for securely computing GT and GT-SCOT. (iii) A simple and efficient modular construction reducing SCOT based on membership in a union of intervals (UI-SCOT) to GT-SCOT, producing an efficient one-round UI-SCOT.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proc. 22nd ACM Symp. on Theory of Computing, pp. 503–513 (1990)
Cachin, C., Camenisch, J., Kilian, J., Muller, J.: One-round secure computation and secure autonomous mobile agents. In: Proceedings of the 27th International Colloquium on Automata, Languages and Programming (2000)
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, p. 462. Springer, Heidelberg (1988)
Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer and time-released encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 74–89. Springer, Heidelberg (1999)
Desmedt, Y.: Unconditionally secure authentication schemes and practical and theoretical consequences. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 42–55. Springer, Heidelberg (1986)
Fischlin, M.: A cost-effective pay-per-multiplication comparison method for millionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471. Springer, Heidelberg (2001)
Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)
Galbraith, S.D.: Elliptic curve paillier schemes. Journal of Cryptology 15(2), 129–138 (2002)
Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)
Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: Proc. 14th ACM Symp. on Theory of Computing, San Francisco, pp. 365–377. ACM, New York (1982)
Halevi, S.: Efficient commitment schemes with bounded sender and unbounded receiver. Journal of Cryptology: the journal of the International Association for Cryptologic Research 12(2), 77–89 (1999)
Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. In: ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, DMKD 2002 (2002)
Kilian, J.: Founding cryptography on oblivious transfer. In: Proc. 20th ACM Symp. on Theory of Computing, Chicago, pp. 20–31. ACM, New York (1988)
Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 20–24. Springer, Heidelberg (2000)
Lindell, Y., Pinkas, B.: A proof of yao’s protocol for secure two-party computation. Cryptology ePrint Archive, Report 2004/175 (2004), http://eprint.iacr.org/
Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 590–599. ACM Press, New York (2001)
Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: 1st ACM Conf. on Electronic Commerce, pp. 129–139 (1999)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)
Rogaway, P.: The round complexity of secure protocols. PhD thesis, MIT (1991)
Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC 1. In: Proceedings 40th IEEE Symposium on Foundations of Computer Science, New York, pp. 554–566. IEEE, Los Alamitos (1999)
Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE Symp. on Foundations of Comp. Science, Chicago, pp. 160–164. IEEE, Los Alamitos (1982)
Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th IEEE Symp. on Foundations of Comp. Science, Toronto, pp. 162–167. IEEE, Los Alamitos (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blake, I.F., Kolesnikov, V. (2004). Strong Conditional Oblivious Transfer and Computing on Intervals. In: Lee, P.J. (eds) Advances in Cryptology - ASIACRYPT 2004. ASIACRYPT 2004. Lecture Notes in Computer Science, vol 3329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30539-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-540-30539-2_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23975-8
Online ISBN: 978-3-540-30539-2
eBook Packages: Springer Book Archive