Skip to main content

Audio Visual Cues for Video Indexing and Retrieval

  • Conference paper
Advances in Multimedia Information Processing - PCM 2004 (PCM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3331))

Included in the following conference series:

Abstract

This paper studies content-based video retrieval using the combination of audio and visual features. The visual feature is extracted by an adaptive video indexing technique that places a strong emphasis on accurate characterization of spatio-temporal information within video clips. Audio feature is extracted by a statistical time-frequency analysis method that applies Laplacian mixture models to wavelet coefficients. The proposed joint audio-visual retrieval framework is highly flexible and scalable, and can be effectively applied to various types of video databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chang, Y.-L., Zeng, W., Kamel, I., Alonso, R.: Integrated image and speech analysis for content-based video indexing. In: Proc. of IEEE Int. Conf. on Multimedia Computing and Systems, pp. 306–313 (1996)

    Google Scholar 

  2. Dahyot, R., Kokaram, A., Rea, N., Denman, H.: Joint audio visual retrieval for tennis broadcasts. In: Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 3, pp. 561–564

    Google Scholar 

  3. Saraceno, C.: Video content extraction and representation using a joint audio and video processing. In: Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 6, pp. 3033–3036 (1999)

    Google Scholar 

  4. Huang, J., Liu, Z., wang, Y., Chen, Y., Wong, E.K.: Integration of multimodal features for video scene classification based on HMM. In: IEEE Workshop on Multimedia Signal Processing, pp. 53–58 (1999)

    Google Scholar 

  5. Jasinschi, R.S., Dimitrova, N., McGee, T., Agnihotri, L., Zimmerman, J., Li, D., Louie, J.: A probabilistic layered framework fro integrating multimedia content and context information. In: Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 2, pp. 2057–2060 (2002)

    Google Scholar 

  6. Naphade, M.R., Huang, T.S.: Extracting semantics from audiovisual content: The final frontier in multimedia retrieval. IEEE Trans. on Neural Networks 13(4), 793–810 (2002)

    Article  Google Scholar 

  7. Muneesawang, P., Guan, L.: Video retrieval using an adaptive video indexing technique and automatic relevance feedback. In: IEEE Workshop on Multimedia Signal Processing, pp. 220–223 (2003)

    Google Scholar 

  8. Kohonen, T.: Self-organising MAPS, 2nd edn. Springer, Heidelberg (1997)

    Google Scholar 

  9. Crouse, M.S., Nowak, R.D., Baraniuk, R.G.: Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing 46(4), 886–902 (1998)

    Article  MathSciNet  Google Scholar 

  10. Wold, E., Blum, T., Keislar, D., Wheaton, J.: Content-based classificaiton, search and retrieval of audio. IEEE Multimedia 3(3), 27–36 (1996)

    Article  Google Scholar 

  11. Saunders, J.: Real-Time Discrimination of Broadcast Speech /Music. In: IEEE Int. Conf. on Acoustic, Speech, and Signal Processing, Atlanta, vol. 2, pp. 993–996 (May 1996)

    Google Scholar 

  12. Bilmes, J.: A gentle tutorial on the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Technical Report ICSI-TR-97-021, University of Berkeley (1998)

    Google Scholar 

  13. Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: A power tool for interactive content-based image retrieval. IEEE Trans. Circuits Syst. Video Tech. 8(5), 644–655 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muneesawang, P., Amin, T., Guan, L. (2004). Audio Visual Cues for Video Indexing and Retrieval. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds) Advances in Multimedia Information Processing - PCM 2004. PCM 2004. Lecture Notes in Computer Science, vol 3331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30541-5_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30541-5_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23974-1

  • Online ISBN: 978-3-540-30541-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics