Abstract
In this paper, a new sign-wise tied mixture HMM (SWTM-HMM) is proposed and applied in vision-based sign language recognition (SLR). In the SWTMHMM, the mixture densities of the same sign model are tied so that the states belonging to the same sign share a common local codebook, which leads to robust model parameters estimation and efficient computation of probability densities. For the sign feature extraction, an effective hierarchical feature description scheme with different scales of features to characterize sign language is presented. Experimental results based on 439 frequently used Chinese sign language (CSL) signs show that the proposed methods can work well for the medium vocabulary SLR in the unconstrained environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liang, R.H., Ouhyoung, M.: A Real-Time Continuous Gesture Recognition System for Sign Language. In: AFGR, pp. 558–565 (1998)
Gao, W., et al.: Handtalker: A Multimodal Dialog System Using Sign Language and 3-D Virtual Human. In: ICMI, pp. 564–571 (2000)
Mastuo, H., et al.: The Recognition Algorithm with Non-contact for Japanese Sign Language Using Morphological Analysis. In: Wachsmuth, I., Fröhlich, M. (eds.) GW 1997. LNCS (LNAI), vol. 1371, pp. 273–284. Springer, Heidelberg (1998)
Starner, T., et al.: Real-Time American Sign Language Recognition Using Desk and Wearable Computer Based Video. IEEE PAMI 20(12), 1371–1375 (1998)
Vogler, C., Metaxas, D.: Adapting Hidden Markov Models for ASL Recognition by Using Three-Dimensional Computer Vision Methods. In: Proc. SMC, pp. 156–161 (1997)
Grobel, K., Assan, M.: Isolated Sign Language Recognition Using Hidden Markov Models. In: Proc. SMC, pp. 162–167 (1996)
Bauer, B., Hienz, H.: Relevant Features for Video-Based Continuous Sign Language Recognition. In: AFGR, pp. 440–445 (2000)
Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE 77(2), 257–285 (1989)
Bellegarda, J.R., Nahamoo, D.: Tied Mixture Continuous Parameter Modeling for Speech Recognition. IEEE Trans. ASSP 38(12), 2033–2045 (1990)
Huang, X.D.: Phoneme Classification Using Semi-continuous Hidden Markov Models. IEEE Trans. Signal Processing 40, 1062–1067 (1992)
Digalakis, V., Murveit, H.: Genones: Optimizing the Degree of Mixture Tying in a Large Vocabulary Hidden Markov Model Based Speech Recognition. In: ICASSP, pp. 537–540 (1994)
Kurimo, M.: Hybrid Training Method for Tied Mixture Density Hidden Markov Models Using Learning Vector Quantization and Viterbi Estimation. In: Proc. IEEE Workshop on NNSP, pp. 362–371 (1994)
Kohonen, T.: The Self-Organizing Maps. Proceedings of the IEEE 78(9), 1464–1480 (1990)
Miao, J., Gao, W., et al.: Gravity-center Template Based Human Face Feature Detection. In: Tan, T., Shi, Y., Gao, W. (eds.) ICMI 2000. LNCS, vol. 1948, pp. 207–214. Springer, Heidelberg (2000)
Jabri, S., et al.: Detection and Location of People in Video Images Using Adaptive Fusion of Color and Edge Information. In: ICPR, vol. 4, pp. 627–630 (2000)
Zhang, L.-G., et al.: A Vision-Based Sign Language Recognition System Using Tied-Mixture Density HMM. In: ICMI, State College, Pennsylvania, USA (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, L., Fang, G., Gao, W., Chen, X., Chen, Y. (2004). Vision-Based Sign Language Recognition Using Sign-Wise Tied Mixture HMM. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds) Advances in Multimedia Information Processing - PCM 2004. PCM 2004. Lecture Notes in Computer Science, vol 3332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30542-2_127
Download citation
DOI: https://doi.org/10.1007/978-3-540-30542-2_127
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23977-2
Online ISBN: 978-3-540-30542-2
eBook Packages: Computer ScienceComputer Science (R0)