Skip to main content

Vision-Based Sign Language Recognition Using Sign-Wise Tied Mixture HMM

  • Conference paper
Advances in Multimedia Information Processing - PCM 2004 (PCM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3332))

Included in the following conference series:

Abstract

In this paper, a new sign-wise tied mixture HMM (SWTM-HMM) is proposed and applied in vision-based sign language recognition (SLR). In the SWTMHMM, the mixture densities of the same sign model are tied so that the states belonging to the same sign share a common local codebook, which leads to robust model parameters estimation and efficient computation of probability densities. For the sign feature extraction, an effective hierarchical feature description scheme with different scales of features to characterize sign language is presented. Experimental results based on 439 frequently used Chinese sign language (CSL) signs show that the proposed methods can work well for the medium vocabulary SLR in the unconstrained environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liang, R.H., Ouhyoung, M.: A Real-Time Continuous Gesture Recognition System for Sign Language. In: AFGR, pp. 558–565 (1998)

    Google Scholar 

  2. Gao, W., et al.: Handtalker: A Multimodal Dialog System Using Sign Language and 3-D Virtual Human. In: ICMI, pp. 564–571 (2000)

    Google Scholar 

  3. Mastuo, H., et al.: The Recognition Algorithm with Non-contact for Japanese Sign Language Using Morphological Analysis. In: Wachsmuth, I., Fröhlich, M. (eds.) GW 1997. LNCS (LNAI), vol. 1371, pp. 273–284. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Starner, T., et al.: Real-Time American Sign Language Recognition Using Desk and Wearable Computer Based Video. IEEE PAMI 20(12), 1371–1375 (1998)

    Google Scholar 

  5. Vogler, C., Metaxas, D.: Adapting Hidden Markov Models for ASL Recognition by Using Three-Dimensional Computer Vision Methods. In: Proc. SMC, pp. 156–161 (1997)

    Google Scholar 

  6. Grobel, K., Assan, M.: Isolated Sign Language Recognition Using Hidden Markov Models. In: Proc. SMC, pp. 162–167 (1996)

    Google Scholar 

  7. Bauer, B., Hienz, H.: Relevant Features for Video-Based Continuous Sign Language Recognition. In: AFGR, pp. 440–445 (2000)

    Google Scholar 

  8. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE 77(2), 257–285 (1989)

    Article  Google Scholar 

  9. Bellegarda, J.R., Nahamoo, D.: Tied Mixture Continuous Parameter Modeling for Speech Recognition. IEEE Trans. ASSP 38(12), 2033–2045 (1990)

    Article  Google Scholar 

  10. Huang, X.D.: Phoneme Classification Using Semi-continuous Hidden Markov Models. IEEE Trans. Signal Processing 40, 1062–1067 (1992)

    Article  Google Scholar 

  11. Digalakis, V., Murveit, H.: Genones: Optimizing the Degree of Mixture Tying in a Large Vocabulary Hidden Markov Model Based Speech Recognition. In: ICASSP, pp. 537–540 (1994)

    Google Scholar 

  12. Kurimo, M.: Hybrid Training Method for Tied Mixture Density Hidden Markov Models Using Learning Vector Quantization and Viterbi Estimation. In: Proc. IEEE Workshop on NNSP, pp. 362–371 (1994)

    Google Scholar 

  13. Kohonen, T.: The Self-Organizing Maps. Proceedings of the IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  14. Miao, J., Gao, W., et al.: Gravity-center Template Based Human Face Feature Detection. In: Tan, T., Shi, Y., Gao, W. (eds.) ICMI 2000. LNCS, vol. 1948, pp. 207–214. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Jabri, S., et al.: Detection and Location of People in Video Images Using Adaptive Fusion of Color and Edge Information. In: ICPR, vol. 4, pp. 627–630 (2000)

    Google Scholar 

  16. Zhang, L.-G., et al.: A Vision-Based Sign Language Recognition System Using Tied-Mixture Density HMM. In: ICMI, State College, Pennsylvania, USA (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, L., Fang, G., Gao, W., Chen, X., Chen, Y. (2004). Vision-Based Sign Language Recognition Using Sign-Wise Tied Mixture HMM. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds) Advances in Multimedia Information Processing - PCM 2004. PCM 2004. Lecture Notes in Computer Science, vol 3332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30542-2_127

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30542-2_127

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23977-2

  • Online ISBN: 978-3-540-30542-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics