Skip to main content

Image Retrieval by Categorization Using LVQ Network with Wavelet Domain Perceptual Features

  • Conference paper
Advances in Multimedia Information Processing - PCM 2004 (PCM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3332))

Included in the following conference series:

  • 798 Accesses

Abstract

Though most textile images are pattern dominant, there found a limited researches that focus on the pattern characteristics. In this study, we propose some perceptual features (directionality, regularity, symmetry) in the wavelet domain. Correlation among wavelet coefficients is the basis of the above features. In order to reduce searching time, we first categorize the database using supervised LVQ network. For each class, a class-vector is formed through averaging all the feature vectors in that class. The query key is first compared with class-vectors to come up with a category. It then performs similarity comparisons with the population of the selected category and retrieves relevant images. Users have also the provision to interact with the system if query fails to capture the relevant class. An experiment with a set of 300 curtain images shows the effectiveness of the proposed features compared to the well-known Gabor or discrete wavelet energy signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bashar, M.K., Matsumoto, T., Ohnishi, N.: Wavelet Transform-based Locally Orderless Images for Texture Segmentation. Pattern Recognition Letters 24(15), 2633–2650 (2003)

    Article  Google Scholar 

  2. Bashar, M.K., Ohnishi, N.: Integrating Cortex Transform and Brightness Based Features for Multi-texture Classification. The J. Inst. Image Info. and Television Engrs. 56(11), 1769–1778 (2002)

    Google Scholar 

  3. Jones, K.S.: Information Retrieval Experiment. Butterworth and Co., Butterworths (1981)

    Google Scholar 

  4. Balmelli, L., Mojsilovic, A.: Wavelet Domain Features for Texture Description, Classification and Replica Analysis. In: Proc. IEEE Intl. conf. on Image Process., vol. 4, pp. 440–444 (1999)

    Google Scholar 

  5. Tian, Q., Sebe, N., Lew, M.S., Loupias, E., Huang, T.S.: Image Retrieval Using Wavelet-based Salient Points. J. Electronic Imaging 10(4), 835–849 (2001)

    Article  Google Scholar 

  6. Cheng-Hao, Y., Shu-Yuan, C.: Retrieval of translated, rotated and scaled color textures. Pattern Recognition 36, 913–929 (2003)

    Article  Google Scholar 

  7. Lau, T.K., King, I.: Montage: An Image database for the Fashion, Textile, and Clothing Industry in Hongkong. In: Chin, R., Pong, T.-C. (eds.) ACCV 1998. LNCS, vol. 1351, pp. 410–417. Springer, Heidelberg (1997)

    Google Scholar 

  8. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of large image data. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)

    Article  Google Scholar 

  9. Kubo, M., Aghbari, Z., Oh, K.S., Makinouchi, A.: Image Retrieval by Image Features Using Higher Order Autocorrelation in a SOM Environment. IEICE Trans. on Information and System E86-D(8), 1406–1415 (2003)

    Google Scholar 

  10. Mallat, S.: The theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 11(7), 654–693 (1989)

    Article  Google Scholar 

  11. Suematsu, N., Ishida, Y., Hayashi, A., Kanbara, T.: Region-based Image Retrieval using Wavelet Transform. In: Proc. of the 15th Int. Conf. on Vision Interface, Calgary, Canada, May 27-29, pp. 9–16 (2002)

    Google Scholar 

  12. Paquet, A.H., Zahir, S., Ward, R.K.: Wavelet Packets-Based Image Retrieval. In: Proc. of Int. Conf. on Acoustics, Speech, and Signal Processing, Florida, USA, May13-17 (2002) Paper no.1242

    Google Scholar 

  13. Kangas, J.A., Kohonen, T., Laaksonen, J.T.: Variants of self organizing maps. IEEE Trans. on Neural Networks 1(1), 93–99 (1990)

    Article  Google Scholar 

  14. Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual perception. IEEE Trans. on Systems, Man, and Cybernetics 8(6), 460–473 (1978)

    Article  Google Scholar 

  15. Haralick, R.M., Shanmugam, K., Distein, I.: Texture features for image classification. IEEE Trans. Syst. Man. Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  16. Nestares, O., Navarro, R., Portilla, J., Tabernero, A.: Efficient spatial-domain implementation of a multiscale image representation based on Gabor functions. J. Electronic Imaging 7, 166–173 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bashar, M.K., Ohnishi, N., Agusa, K. (2004). Image Retrieval by Categorization Using LVQ Network with Wavelet Domain Perceptual Features. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds) Advances in Multimedia Information Processing - PCM 2004. PCM 2004. Lecture Notes in Computer Science, vol 3332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30542-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30542-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23977-2

  • Online ISBN: 978-3-540-30542-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics