Abstract
Given the unprecedented demand on face recognition technology, it is not surprising to see an overwhelming amount of research publications on this topic in recent years. In this paper we conduct a survey on subspace analysis, which is one of the fastest growing areas in face recognition research. We first categorize the existing techniques in subspace analysis into four categories, and present descriptions of recent representative methods within each category. Then we discuss three main directions in recent research and point out some challenging issues that remain to be solved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bledsoe, W.: The Model Method in Facial Recognition. Panoramic Research Inc., Palo Alto (1964)
Sirovich, L., Kirby, M.: Low-dimensional Procedure for the Characterization of Human Faces. Journal of the Optical Society of America A 4, 519–524 (1987)
Kirby, M., Sirovich, L.: Application of the Karhunen-Loéve Procedure for the Characterization of Human Faces. IEEE Trans. On Pattern Analysis and Machine Intelligence 12, 103–108 (1990)
Turk, M., Pentland, A.: Eigenface for Recognition. Journal of Cognitive Neuroscience 3, 72–86 (1991)
Pentland, A., Moghaddam, B., Starner, T.: View-based and Modular Eigenspaces for Face Recognition. In: Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition, pp. 84–91 (1994)
Moghaddam, B., Pentland, A.: Probabilistic Visual Learning for Object Representation. IEEE Trans. On Pattern Analysis and Machine Intelligence 19, 696–710 (1997)
Moghaddam, B., Jebara, T., Pentland, A.: Bayesian Face Recognition. Pattern Recognition 33, 1771–1782 (2000)
Swets, D.L., Weng, J.: Using Discriminant Eigenfeatures for Image Retrieval. IEEE Trans. On Pattern Analysis and Machine Intelligence 18, 831–836 (1996)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. On Pattern Analysis and Machine Intelligence 19, 711–720 (1997)
Yu, H., Yang, J.: A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition. Pattern Recognition 34, 2067–2070 (2001)
Chen, L., Liao, H., Ko, M., Lin, J., Yu, G.: A New Lda-based Face Recognition System Which Can Solve the Small Samples Size Problem. Journal of Pattern Recognition 33, 1713–1726 (2000)
Loog, M., Duin, R.P.W., Haeb-Umbach, R.: Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria. IEEE Trans. On Pattern Analysis and Machine Intelligence 23, 762–766 (2001)
Friedman, J.H.: Regularized Discriminant Analysis. Journal of the American Statistical Association 84, 165–175 (1989)
Schölkopf, B.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10, 1299–1319 (1998)
Penev, P.S., Atick, J.J.: Local Feature Analysis: A General Statistical Theory for Object Representation. Network Computation in Neural Systems 7, 477–500 (1996)
Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face Recognition by Independent Component Analysis. IEEE Trans. On Neural Networks 13, 1450–1464 (2002)
Hyvärinen, A., Hoyer, P.O.: Emergence of Phase and Shift Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces. Neural Computation 12, 1705–1720 (2000)
Hyvärinen, A., Hoyer, P.O., Inki, M.: Topographic Independent Component Analysis. Neural Computation 13, 1525–1558 (2001)
Moghaddam, B.: Principal Manifolds and Bayesian Subspaces for Visual Recognition. In: Proc. 7th IEEE Int’l Conf. On Computer Vision, pp. 1131–1136 (1999)
Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)
Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)
Li, S.Z., Hou, X.W., Zhang, H.J., Cheng, Q.S.: Learning Spatially Localized Parts-Based Representation. In: Proc. Int’l Conf. Computer Vision and Pattern Recognition, pp. 207–212 (2001)
Lades, M., Vorbrüggen, J.C., Buhmann, J., Lange, J., Malsburg, C., Würtz, R.P., Konen, W.: Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Trans. On Computers 42, 300–311 (1993)
Wiskott, L., Fellous, J.M., Krüger, N., Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 775–779 (1997)
Kohonen, T.: Associative Memory: A System Theoretic Approach. Springer-Verlag, Berlin (1977)
Kung, S.Y., Taur, J.S.: Decision-based Neural Networks with Signal Image Classification Applications. IEEE Trans. On Neural Networks 6, 170–181 (1995)
Samaria, F., Young, S.: HMM Based Architecture for Face Identification. Image and Computer Vision 12, 537–583 (1994)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. IEEE Trans. On Pattern Analysis and Machine Intelligence 23, 681–685 (2001)
Moghaddam, B., Nastar, C., Pentland, A.: Bayesian Face Recognition Using Deformable Intensity Surfaces. In: Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition, pp. 638–645 (1996)
Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3D Faces. In: Proc. SIGGRAPH, pp. 187–194 (1999)
Oja, E.: Subspace Methods of Pattern Recognition. Research Studies Press, Letchworth (1983)
Vasilescu, M.A.O., Terzopoulos, D.: Multilinear Subspace Analysis of Image Ensembles. In: Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition, pp. 93–99 (2003)
Yang, Q., Ding, X.Q.: Symmetrical Principal Component Analysis and Its Application in Face Recognition. Chinese Journal of Computers 26, 1146–1151 (2003)
Yang, J., Zhang, D.: Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 28, 131–137 (2004)
Cavalcanti, G.D.C., Filho, E.C.B.C.: Eigenbands Fusion for Frontal Face Recognition. Proc. IEEE Int’l Conf. on Image Processing, 665–668 (2003)
Etemad, K., Chellappa, R.: Face Recognition Using Discriminant Eigenvector. In: Proc. IEEE Int’1 Conf. On Acoustics, Speech, and Signal Processing, pp. 2148–2151 (1996)
Wang, X., Tang, X.: Random Sampling LDA for Face Recognition. In: Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition, pp. 259–265 (2004)
Wang, X., Tang, X.: Dual-space Linear Discriminant Analysis for Face Recognition. In: Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition, pp. 564–569 (2004)
Wang, X., Tang, X.: Unified Subspace Analysis for Face Recognition. In: Proc. IEEE Int’l Conf. on Computer Vision, pp. 679–686 (2003)
Howland, P., Park, H.: Generalized Discriminant Analysis Using the Generalized Singular Value Decomposition. IEEE Trans. On Pattern Analysis and Machine Intelligence 26, 995–1006 (2004)
Ye, J.P., Janardan, R., Park, C.H., Park, H.: An Optimization Criterion for Generalized Discriminant Analysis on Undersampled Problems. IEEE Trans. On Pattern Analysis and Machine Intelligence 26, 982–994 (2004)
Lu, J.W., Plataniotis, K.N., Venetsanopoulos, A.N.: Face Recognition Using Kernel Direct Discriminant Analysis Algorithms. IEEE Trans. Neural Networks 14, 117–126 (2003)
Lu, J.W., Plataniotis, K.N., Venetsanopoulos, A.N.: Regularized D-LDA for Face Recognition. In: Proc. IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing, pp. 125–128 (2003)
Lu, J.W., Plataniotis, K.N., Venetsanopoulos, A.N.: Face Recognition Using LDA-based Algorithms. IEEE Trans. On Neural Networks 14, 195–200 (2003)
Lu, J.W., Plataniotis, K.N., Venetsanopoulos, A.N.: Boosting Linear Discriminant Analysis for Face Recognition. In: Proc. IEEE Int’l Conf. on Image Processing, pp. 657–660 (2003)
Jing, X.J., Zhang, D., Tang, Y.-Y.: An Improved LDA Approach. IEEE Trans. On Systems, Man, and Cybernetics 34, 1942–1951 (2004)
Yang, Q., Ding, X.Q.: Discriminant Local Feature Analysis of Facial Images. In: IEEE Int’l Conf. on Image Processing, pp. 863–866 (2003)
Liu, Q., Lu, H., Ma, S.: Improving Kernel Fisher Discriminant Analysis for Face Recognition. IEEE Trans. On Circuits and Systems for Video Technology 14, 42–49 (2004)
Huang, J., Yuen, P.C., Chen, W.S., Lai, J.H.: Kernel Subspace LDA with Optimized Kernel Parameters on Face Recognition. In: IEEE Proc. Int’l Conf. on Automatic Face and Gesture Recognition (2004)
Huang, J., Yuen, P.C., Chen, W.S., Lai, J.H.: Component-based LDA Method for Face Recognition with One Training Sample. In: IEEE Int’l Workshop on Analysis and Modeling of Faces and Gestures, pp. 120–126 (2003)
Liu, W., Wang, Y., Li, S.Z., Tan, T.: Null Space-based Kernel Fisher Discriminant Analysis for Face Recognition. In: IEEE Proc. Int’l Conf. on Automatic Face and Gesture Recognition (2004)
Marcel, S.: A Symmetric Transformation for LDA-based Face Verification. In: IEEE Proc. Int’l Conf. on Automatic Face and Gesture Recognition (2004)
Wu, X.J., Kittler, J., Yang, J.Y., Messer, K., Wang, S.: A New Direct LDA Algorithm for Feature Extraction in Face Recognition. In: IEEE Proc. Int’l Conf. on Pattern Recognition, pp. 545–548 (2004)
Liu, Q., Tang, X., Lu, H., Ma, S.: Kernel Scatter-Difference Based Discriminant Analysis for Face Recognition. In: Proc. IEEE Int’l Conf. on Pattern Recognition, pp. 419–422 (2004)
Kim, T.K., Kim, H., Hwang, W., Kee, S.-C., Kittler, J.: Independent Component Analysis in a Facial Local Residue Space. In: IEEE Proc. Int’l Conf. on Computer Vision and Pattern Recognition, pp. 579–586 (2003)
Liu, C., Wechsler, H.: Independent Component Analysis of Gabor Features for Face Recognition. IEEE Trans. on Neural Networks 14, 919–928 (2003)
Liu, C.: Enhanced Independent Component Analysis and Its Application to Content Based Face Image Retrieval. IEEE Trans. on Systems, Man and Cybernetics 34, 1117–1127 (2004)
Huang, Y., Luo, S.: Genetic Algorithm Applied to ICA Feature Selection. In: Proc. Int’l Joint Conf. on Neural Networks, pp. 704–707 (2003)
Fortuna, J., Capson, D.: ICA Filters for Lighting Invariant Face Recognition. In: Proc. IEEE Int’l Conf. on Pattern Recognition, pp. 334–337 (2004)
Sengupta, K., Burman, P.: Non-parametric Approach to ICA Using Kernel Density Estimation. In: Proc. IEEE Int’l Conf. on Multimedia and Expo, pp. 749–752 (2003)
He, X., Yan, S.C., Hu, Y.X., Zhang, H.J.: Learning a Locality Preserving Subspace for Visual Recognition. In: IEEE Proc. Int’l Conf. on Computer Vision, pp. 178–185 (2003)
Yan, S.C., Zhang, H.J., Hu, Y.X., Zhang, B.Y., Cheng, Q.S.: Discriminant Analysis on Embedded Manifold. In: European Conf. on Computer Vision, pp. 121–132 (2004)
Zhang, J., Li, S.Z., Wang, J.: Nearest Manifold Approach for Face Recognition. In: Proc. IEEE Int’l Conf. on Automatic Face and Gesture Recognition, pp. 223–228 (2004)
Wu, Y., Chan, K.L., Wang, L.: Face Recognition based on Discriminative Manifold Learning. In: Proc. IEEE Int’l Conf. on Pattern Recognition, pp. 171–174 (2004)
Li, Z., Tang, X.: Bayesian Face Recognition Using Support Vector Machine and Face Clustering. In: Proc. Int’l Conf. Computer Vision and Pattern Recognition, pp. 374–380 (2004)
Tang, X., Li, Z.: Frame Synchronization and Multi-level Subspace Analysis for Video based Face Recognition. In: Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition, pp. 902–907 (2004)
Tang, X., Wang, X.: Face Sketch Synthesis and Recognition. In: Proc. IEEE Int’l Conf. on Computer Vision, pp. 687–694 (2003)
Liu, W., Wang, Y., Li, S.Z., Tan, T.: Nearest Intra-Class Space Classifier for Face Recognition. In: IEEE Proc. Int’l Conf. on Pattern Recognition (2004)
Li, J., Zhou, S., Shekhar, C.: A Comparison of Subspace Analysis for Face Recognition. In: Proc. IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing, pp. 121–124 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, Q., Tang, X. (2004). Recent Advances in Subspace Analysis for Face Recognition. In: Li, S.Z., Lai, J., Tan, T., Feng, G., Wang, Y. (eds) Advances in Biometric Person Authentication. SINOBIOMETRICS 2004. Lecture Notes in Computer Science, vol 3338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30548-4_32
Download citation
DOI: https://doi.org/10.1007/978-3-540-30548-4_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24029-7
Online ISBN: 978-3-540-30548-4
eBook Packages: Computer ScienceComputer Science (R0)