Skip to main content

A Hybrid Classification Approach to Ultrasonic Shaft Signals

  • Conference paper
AI 2004: Advances in Artificial Intelligence (AI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3339))

Included in the following conference series:

  • 2723 Accesses

Abstract

In many applications of machine learning a series of feature extraction approaches and a series of classifiers are explored in order to obtain a system with the highest accuracy possible. In the application we discussed here at least two feature extraction approaches have been explored (Fast Fourier Transform) and Discrete Wavelet Transform, and at least two approaches to build classifiers have also been explored (Artificial Neural Networks and Support Vector Machines). If one combination seems superior in terms of accuracy rate, shall we adopt it as the one to use or is there a combination of the approaches that results in some benefit? We show here how we have combined classifiers considering the misclassification cost to obtain a more informative classification for its application in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning 36, 105–139 (1999)

    Article  Google Scholar 

  2. Schapire, R.: The boosting approach to machine learning: An overview. In: Proceedings of the MSRI Workshop on Nonlinear Estimation and Classification (2002)

    Google Scholar 

  3. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Cotterill, G., Perceval, J.: A New Approach to Ultrasonic Testing of Shafts. In: Proceedings of the 10th Asia-Pacific Conference on Non-Destructive Testing, APCNDT (2001)

    Google Scholar 

  5. Katragadda, G., Nair, S., Singh, G.P.: Neuro-Fuzzy Systems in Ultrasonic Weld Evaluation. Review of Progress in Quantitative Nondestructive Evaluation 16, 765–772 (1997)

    Google Scholar 

  6. Song, S.J., Kim, H.J., Lee, H.: A systematic approach to ultrasonic pattern recognition for real-time intelligent flaw classification in weldments. Review of Progress in Quantitative Nondestructive Evaluation 18, 865–872 (1999)

    Google Scholar 

  7. Margrave, F.W., Rigas, K., Bradley, D.A., Barrocliffe, P.: The use of neural networks in ultrasonic flaw detection. Measurement 25, 143–154 (1999)

    Article  Google Scholar 

  8. Obaidat, M.S., Suhail, M.A., Sadoun, B.: An intelligent simulation methdology to characterize defects in materials. Information Sciences 137, 33–41 (2001)

    Article  MATH  Google Scholar 

  9. Simone, G., Morabito, F.C., Polikar, R., Ramuhalli, P., Udpa, L., Udpa, S.: Feature extraction techniques for ultrasonic signal classification. In: Proceedings of the 10th Int. Symposium on Applied Electromagnetics and Mechanics, ISEM 2001 (2001)

    Google Scholar 

  10. Polikar, R., Udpa, L., Udpa, S.S., Taylor, T.: Frequency Invariant Classification of Ultrasonic Weld Inspection Signals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 45, 614–625 (1998)

    Article  Google Scholar 

  11. Redouane, D., Mohamed, K., Amar, B.: Flaw Detection in Ultrasonics Using Wavelets Transform and Split Spectrum. In: Proceedings of the 15th World Conference on Non-Destructive Testing (2000)

    Google Scholar 

  12. Spanner, J., Udpa, L., Polikar, R., Ramuhalli, P.: Neural networks for ultrasonic detection of intergranular stress corrosion cracking. The e-Journal of Nondestructive Testing And Ultrasonics 5 (2000)

    Google Scholar 

  13. Lee, K., Estivill-Castro, V.: Classification of Ultrasonic Shaft Inspection Data Using Discrete Wavelet Transform. In: Proceedings of the IASTED international conferences on Artificial Intelligence and appliction, pp. 673–678. ACTA Press (2003)

    Google Scholar 

  14. Lee, K., Estivill-Castro, V.: Support Vector Machine Classification of Ultrasonic shaft Inspection Data Using Discrete Wavelet Transform. In: Proceedings of the, International Conference on Machine Learning; Models, Technologies and Applications, pp. 848–854 (2004)

    Google Scholar 

  15. Lee, K., Estivill-Castro, V.: Feature Extraction Techniques for Ultrasonic Shaft Signal Classification. In: Proceedings of the International Conference on Hybrid Intelligent Systems, pp. 479–488. IOS Press, Amsterdam (2003)

    Google Scholar 

  16. Daubechies, I.: Orthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, K., Estivill-Castro, V. (2004). A Hybrid Classification Approach to Ultrasonic Shaft Signals. In: Webb, G.I., Yu, X. (eds) AI 2004: Advances in Artificial Intelligence. AI 2004. Lecture Notes in Computer Science(), vol 3339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30549-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30549-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24059-4

  • Online ISBN: 978-3-540-30549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics