Skip to main content

Natural Landmark Based Navigation

  • Conference paper
AI 2004: Advances in Artificial Intelligence (AI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3339))

Included in the following conference series:

  • 2571 Accesses

Abstract

The work described in this paper presents a goal oriented navigation system in a behavior-based manner. The main contributions are, in first place the in-depth study of local navigation strategies and, on the other hand, the use of natural landmarks, namely corridors and emergency exit panels. Eliminating the centralized control of modules the system performs the task as a result of the combination of many relatively simple and light weight behaviors that run concurrently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloimonos, J.: Active Perception. Lawrence Erlbaum Assoc. Inc., Mahwah (1993)

    Google Scholar 

  • Arkin, R.: Motor schema-based mobile robot navigation. International Journal of Robotics Research 8(4), 92–112 (1989)

    Article  Google Scholar 

  • Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  • Astigarraga, A., Lazkano, E., Rañó, I., Sierra, B., Zarautz, I.: sorgin: a software framework for behavior control implementation. In: CSCS14, vol. 1, pp. 243–248 (2003)

    Google Scholar 

  • Bengtsson, O., Baerveldt, A.: Robot localization based on scan-matching – estimating the covariance matrix for the IDC algorithm. International Journal Robotics and Autonomous Systems 1–2(44), 131–150 (2003)

    Google Scholar 

  • Borenstein, J., Everett, B., Feng, L.: Navigating Mobile Robots: Systems and Techniques. In: Peters, A.K, ed. (1996)

    Google Scholar 

  • Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of robotics and automation 26, 14–23 (1986)(RA)

    Article  MathSciNet  Google Scholar 

  • Burgard, W., Derr, A., Fox, D., Cremers, A.B.: Integrating global position estimation and position tracking for mobile robots: the dynamic markov localization approach. In: Proceedings of the IEEE/RSJ International Conference on Intelligent RObot and Systems (1998)

    Google Scholar 

  • Collett, T.S., Collett, M., Wehner, E.: The guidance of desert ants by extended landmarks. The IEEE Journal of Experimental Biology 204, 1635–1639 (2001)

    Google Scholar 

  • Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Where did I take the snapshot? scene-based homing by image matching. Biological Cybernetics 79, 191–202 (1998)

    Article  MATH  Google Scholar 

  • Greiner, R., Isukapalli, R.: Learning to select usefule landmarks. In: Proceedings of the Twelfth National Cnference on Artificial Intelligence, pp. 1251–1256. AAAI Press/MIT Press, Menlo Park (1994)

    Google Scholar 

  • Levitt, T.S., Lawton, D.T.: Qualitative navigation for mobile robots. Artificial Intelligence 44(3), 305–360 (1990)

    Article  Google Scholar 

  • Maes, P.: The dynamic of action selection. In: Proceedings of the 1989 International Joint Conference on Artificial Intelligence, Detroit, pp. 991–997 (1989)

    Google Scholar 

  • Mallot, H.A., Franz, M.A.: Biomimetic robot navigation. Robotics and Autonomous System 30, 133–153 (2000)

    Article  Google Scholar 

  • Mata, M., Armingol, J., de la Escalera, A., Salichs, M.: Learning visual landmarks for mobile robot navigation. In: Proceedings of the 15th world congress of the International Federation of Autonomic Control (2002)

    Google Scholar 

  • Matarić, M.: Behavior–based control: examples from navigation, learning and group behavior. Journal of Experimental and Theoretical Artificial Intelligence 9, 323–336 (1997)

    Article  Google Scholar 

  • Nehmzow, U.: Animal and robot navigation. Robotics and Autonomous Systems 15, 71–81 (1995)

    Article  Google Scholar 

  • Nehmzow, U., Owen, C.: Experiments with manchester’s fourty two in unmodified large environments. Robotics and Autonomous Systems 33, 223–242 (2000)

    Article  Google Scholar 

  • Nehmzow, U., Walker, K.: Is the behavior of a mobile robot chaotic. In: Proceedings of the Artificial Intelligence and Simulated Behavior (2003)

    Google Scholar 

  • Owen, C., Nehmzow, U.: Map interpretation in dynamic environments. In: Proceedings of the 8th International Workshop qon Advanced Motion Control (1998)

    Google Scholar 

  • Pirjanian, P.: Multiple Objective Action Selection and Behavior Fusion using Voting. PhD thesis, Institute of Electronic Systems, Aalborg University, Denmark (1998)

    Google Scholar 

  • Pirjanian, P.: Behavior coordination mechanisms – state of the art. Technical Report iris-99-375, Institute of Robotics and Intelligent Systems, USC (1999)

    Google Scholar 

  • Popescu, N.: Robust self-localization of a robot by intelligent fuzzy system. In: 14th Conference on Control Systems and Computer Science, pp. 175–179 (2003)

    Google Scholar 

  • Rizzi, A., Duina, D., Inelli, S., Cassinis, R.: A novel visual landmark matching for a biologically inspired homing. Pattern Recognition Letters 22, 1371–1378 (2001)

    Article  MATH  Google Scholar 

  • Rosenblatt, J.K.: DAMN: A distributed architecture for mobile navigation. In: Proc. of the AAAI Spring Symp. on Lessons Learned from Implememted Software Architectures for Physical Agents, Stanford, CA, pp. 167–178 (1995)

    Google Scholar 

  • Thrun, S.: Learning maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)

    Article  MATH  Google Scholar 

  • Trahanias, P.E., Velissaris, S., Oraphanoudakis, S.C.: Visual recognition of workspace landmarks for topological navigation. Autonomous Robots 7, 143–158 (1999)

    Article  Google Scholar 

  • Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.A.: Biologically-based artificial navigation systems: Review and prospects. Progress in Neurobiology 51, 483–544 (1997)

    Article  Google Scholar 

  • Webb, B.: Using robots to model animals: a cricket test. Robotics and Autonomous Systems 16, 117–134 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lazkano, E., Astigarraga, A., Sierra, B., Martínez-Otzeta, J.M., Rañó, I. (2004). Natural Landmark Based Navigation. In: Webb, G.I., Yu, X. (eds) AI 2004: Advances in Artificial Intelligence. AI 2004. Lecture Notes in Computer Science(), vol 3339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30549-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30549-1_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24059-4

  • Online ISBN: 978-3-540-30549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics