Skip to main content

Aggregation of Foraging Swarms

  • Conference paper
AI 2004: Advances in Artificial Intelligence (AI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3339))

Included in the following conference series:

  • 2754 Accesses

Abstract

In this paper, we consider an anisotropic swarm model with an attraction/repulsion function and study its aggregation properties. It is shown that the swarm members will aggregate and eventually form a cohesive cluster of finite size around the swarm center. We also study the swarm cohesiveness when the motion of each agent is a combination of the inter-individual interactions and the interaction of the agent with external environment. Moreover, we extend our results to more general attraction/repulsion functions. The model in this paper is more general than isotropic swarms and our results provide further insight into the effect of the interaction pattern on individual motion in a swarm system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine 22, 52–67 (2002)

    Article  Google Scholar 

  2. Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. Automat. Contr. 48, 692–697 (2003)

    Article  MathSciNet  Google Scholar 

  3. Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal groups. J. Theoretical Biology 150, 473–488 (1991)

    Article  Google Scholar 

  4. Chu, T., Wang, L., Chen, T.: Self-organized motion in anisotropic swarms. J. Control Theory and Applications 1, 77–81 (2003)

    Article  MathSciNet  Google Scholar 

  5. Chu, T., Wang, L., Mu, S.: Collective behavior analysis of an anisotropic swarm model. In: Proc. of the 16th International Symposium on Mathematical Theory of Networks and Systems, pp. 1–14 (2004)

    Google Scholar 

  6. Shi, H., Wang, L., Chu, T.: Swarming behavior of multi-agent systems. In: Proc. of the 23rd Chinese Control Conference, pp. 1027–1031 (2004)

    Google Scholar 

  7. Liu, B., Chu, T., Wang, L., Hao, F.: Self-organization in a group of mobile autonomous agents. In: Proc. of the 23rd Chinese Control Conference, pp. 45–49 (2004)

    Google Scholar 

  8. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge Univ. Press, New York (1985)

    MATH  Google Scholar 

  9. Arkin, R.: Behavior-Based Robotics. MIT Press, Cambridge MA (1998)

    Google Scholar 

  10. Pachter, M., Chandler, P.: Challenges of autonomous control. IEEE Control Systems Magazine 18, 92–97 (1998)

    Article  Google Scholar 

  11. Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of one-dimensional asynchronous swarms. IEEE Trans. Automat. Contr. 48, 1848–1854 (2003)

    Article  MathSciNet  Google Scholar 

  12. Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology. IEEE Trans. Automat. Contr. 48, 76–95 (2003)

    Article  MathSciNet  Google Scholar 

  13. Gazi, V., Passino, K.M.: A class of attraction/repulsion functions for stable swarm aggregations. Proc. IEEE Conf. Decision Contr. 3, 2842–2847 (2002)

    Google Scholar 

  14. Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics 34, 539–557 (2004)

    Article  Google Scholar 

  15. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Contr. 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  16. Czirok, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Physica. A. 281, 17–29 (2000)

    Article  Google Scholar 

  17. Anderson, P., Arrow, K.J., Pines, D.: The Economy as an Evolving Complex System. Addison-Wesley, New York (1988)

    MATH  Google Scholar 

  18. Boabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford Univ. Press, Oxford, UK (1999)

    Google Scholar 

  19. Axelord, R.M.: The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration. Princeton Univ. Press, New Jersey (1997)

    Google Scholar 

  20. Waldrop, M.M.: Complexity: The Emerging Science at the Edge of Order and Chaos. Youchstone Books, New York (1993)

    Google Scholar 

  21. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, New York (1996)

    Google Scholar 

  22. Kauffman, S.: At Home in the Universe: The Search for Laws of Self-Organization and Complexity. Oxford Univ. Press, Oxford, UK (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Shi, H., Chu, T., Zhang, W., Zhang, L. (2004). Aggregation of Foraging Swarms. In: Webb, G.I., Yu, X. (eds) AI 2004: Advances in Artificial Intelligence. AI 2004. Lecture Notes in Computer Science(), vol 3339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30549-1_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30549-1_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24059-4

  • Online ISBN: 978-3-540-30549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics