Skip to main content

Cochlea Modelling: Clinical Challenges and Tubular Extraction

  • Conference paper
AI 2004: Advances in Artificial Intelligence (AI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3339))

Included in the following conference series:

Abstract

The cochlear ear implant has become a standard clinical intervention for the treatment of profound sensorineural hearing loss. After 20 years of research into implant design, there are still many unanswered clinical questions that could benefit from new analysis and modelling techniques. This research aims to develop techniques for extracting the cochlea from medical images to support clinical outcomes. We survey the challenges posed by some of these clinical questions and the problems of cochlea modeling. We present a novel algorithm for extracting tubular objects with non-circular cross-sections from medical images, including results from generated and clinical data. We also describe a cochlea model, driven by clinical knowledge and requirements, for representation and analysis. The 3-dimensional cochlea representation described herein is the first to explicitly integrate path and cross-sectional shape, specifically directed at addressing clinical outcomes. The tubular extraction algorithm described is one of very few approaches capable of handling non-circular cross-sections. The clinical results, taken from a human CT scan, show the first extracted centreline path and orthogonal cross-sections for the human cochlea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mondini, C.: Anatomia surdi nati sectio: Bononiensi scientiarum et artium instituto atque academia commentarii. Bononiae 7(1791), 419–431

    Google Scholar 

  2. The Bionic Ear Institute, Melbourne, Australia: About the bionic ear (2004), http://www.bionicear.org/bei/AboutHistory.html

  3. Loizou, P.: Introduction to cochlear implants. IEEE Engineering in Medicine and Biology, 32–42 (1999)

    Google Scholar 

  4. Whiting, B., Bae, K., Skinner, M.: Cochlear implants: Three-dimensional localisation by means of coregistration of CT and conventional radiographs. Radiology 221, 543–549 (2001)

    Article  Google Scholar 

  5. Yoo, S., Rubinstein, J., Vannier, M.: Three-dimensional geometric modeling of the cochlea using helico-spiral approximation. IEEE Transactions on Biomedical Engineering 47, 1392–1402 (2000)

    Article  Google Scholar 

  6. Ketten, D., Skinner, M., Wang, G., Vannier, M., Gates, G., Neely, G.: In vivo measures of cochlear length and insertion depth of nucleus cochlea implant electrode arrays. Ann. Otol., Rhinol. Laryngol. 107, 515–522 (1989)

    Google Scholar 

  7. Cohen, L., Xu, J., Xu, S., Clark, G.: Improved and simplified methods for specifying positions of the electrode bands of a cochlear implant array. American Journal of Otology (1996)

    Google Scholar 

  8. Yoo, S., Wang, G., Rubenstein, J., Skinner, M., Vannier, M.: Three-dimensional modeling and visualisation of the cochlea on the internet. IEEE Transactions on Information Technology in Biomedicine 4, 144–151 (2000)

    Article  Google Scholar 

  9. Wang, G., Vannier, M., Skinner, M., Kalender, W., Polacin, A., Ketten, D.: Unwrapping cochlear implants by spiral CT. IEEE Transactions on Biomedical Engineering 43, 891–900 (1996)

    Article  Google Scholar 

  10. Aylward, S., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Transactions on Medical Imaging 21, 61–75 (2002)

    Article  Google Scholar 

  11. Frangi, A., Niessen, W., Hoogeveen, R., van Walsum, T., Viergever, M.: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Transactions on Medical Imaging 18, 946–956 (1999)

    Article  Google Scholar 

  12. Lorigo, L.M., Faugeras, O.D., Grimson, W.E.L., Keriven, R., Kikinis, R., Nabavi, A., Westin, C.F.: CURVES: Curve evolution for vessel segmentation. Medical Image Analysis 5, 195–206 (2001)

    Article  Google Scholar 

  13. Yim, P., Cebral, J., Mullick, R., Marcos, H., Choyke, P.: Vessel surface reconstruction with a tubular deformable model. IEEE Transactions on Medical Imaging 20, 1411–1421 (2001)

    Article  Google Scholar 

  14. Krissian, K., Vaillant, G.M.R., Trousset, Y., Ayache, N.: Model-based multiscale detection of 3D vessels. In: Computer Vision and Pattern Recognition, pp. 722–727. IEEE, Los Alamitos (1998)

    Google Scholar 

  15. Binford, T.: Visual perception by computer. In: IEEE Conference on Systems Science and Cybernetics (1971)

    Google Scholar 

  16. Zerroug, M., Nevatia, R.: Three-dimensional descriptions based on the analysis of the invariant and quasi-invariant properties of some curved-axis generalized cylinders. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 237–253 (1996)

    Article  Google Scholar 

  17. Bitter, I., Sato, M., Bender, M., McDonnell, K.T., Kaufman, A., Wan, M.: CEASAR: a smooth, accurate and robust centerline extraction algorithm. In: Proceedings of the conference on Visualization 2000, pp. 45–52. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  18. Flasque, N., Desvignes, M., Constans, J.-M., Revenu, M.: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Medical Image Analysis 5, 173–183 (2001)

    Article  Google Scholar 

  19. Baker, G., Barnes, N.: Principal flow for tubular objects with non-circular cross-sections. In: Proceedings of the International Conference on Pattern Recognition, Cambridge, England (2004)

    Google Scholar 

  20. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  21. Ibáñez, L., Schroeder, W., Ng, L., Cates, J.: 1. In: The ITK Software Guide, Kitware Inc (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baker, G., O’Leary, S., Barnes, N., Kazmierczak, E. (2004). Cochlea Modelling: Clinical Challenges and Tubular Extraction. In: Webb, G.I., Yu, X. (eds) AI 2004: Advances in Artificial Intelligence. AI 2004. Lecture Notes in Computer Science(), vol 3339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30549-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30549-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24059-4

  • Online ISBN: 978-3-540-30549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics