Skip to main content

A Kleene Theorem for a Class of Communicating Automata with Effective Algorithms

  • Conference paper
Developments in Language Theory (DLT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3340))

Included in the following conference series:

  • 553 Accesses

Abstract

Existential bounded communication of a communicating finite-state machine means that runs can be scheduled in such a way that message channels are always bounded in size by a value that depends only on the machine. This notion leads to regular sets of representative executions, which allows to get effective algorithms. We show in this paper the equivalence of several formalisms over existentially bounded models: monadic second order logic, communicating automata and globally-cooperative compositional MSC-graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P., Jonsson, B.: Verifying programs with unreliable channels. Information and Computation 127(2), 91–101 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Bouajjani, A., Habermehl, P.: Symbolic Reachability Analysis of FIFO-Channel Systems with Nonregular Sets of Configurations. Theoretical Computer Science 221(1-2), 211–250 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The Power of QDDs. SAS 1997, 172–186 (1997)

    Google Scholar 

  5. Boigelot, B., Godefroid, P.: Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs. Formal Methods in System Design 14(3), 237–255 (1999)

    Article  Google Scholar 

  6. Bollig, B., Leucker, M.: Message-Passing Automata are expressively equivalent to EMSO logic. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 146–160. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 30(2), 323–342 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)

    Google Scholar 

  9. Ebinger, W., Muscholl, A.: Logical definability on infinite traces. Theoretical Computer Science 154, 67–84 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1,2), 63–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Genest, B., Minea, M., Muscholl, A., Peled, D.A.: Specifying and verifying partial order properties using template MSCs. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 195–210. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Gunter, E.L., Muscholl, A., Peled, D.A.: Compositional message sequence charts. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 496–511. Springer, Heidelberg (2001): Journal version International Journal on Software Tools for Technology Transfer (STTT) 5(1), 78–89 (2003)

    Chapter  Google Scholar 

  13. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level mSCs: Model-checking and realizability. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 657–668. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Thiagarajan, P.S.: On message sequence graphs and finitely generated regular MSC languages. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 675–686. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.: A Theory of Regular MSC Languages. To appear in Information and Computation, available at http://www.comp.nus.edu.sg/thiagu/icregmsc.pdf

  16. I.T.U.-T.S.: recommendation Z.120, Message Sequence Charts, Geneva (1999)

    Google Scholar 

  17. Kuske, D.: Regular sets of infinite message sequence charts. Information and Computation (187), 80–109 (2003)

    Google Scholar 

  18. Lohrey, M., Muscholl, A.: Bounded MSC communication. Information and Computation (189), 135–263 (2004)

    Google Scholar 

  19. Leue, S., Mayr, R., Wei, W.: A scalable incomplete test for the boundedness of UML RT models. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 327–341. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Morin, R.: Recognizable sets of message sequence charts. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Madhusudan, P., Meenakshi, B.: Beyond message sequence graphs. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 256–267. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Mazurkiewicz, A.: Concurrent program schemes and their interpretation. Technical report, DAIMI Report PB-78, Aarhus University (1977)

    Google Scholar 

  23. Muscholl, A., Peled, D.: Message Sequence Graphs and decision problems on Mazurkiewicz traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Ochmański, E.: Regular behaviour of concurrent systems. Bulletin of the EATCS 27, 56–67 (1985)

    Google Scholar 

  25. Peled, D.: Specification and verification of Message Sequence Charts. FORTE/PSTV 2000, 139–154 (2000)

    Google Scholar 

  26. Schnoebelen, Ph.: Verifying lossy channel systems has nonprimitive recursive complexity. Information Processing Letter 83(5), 251–261 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. USB 1.1 specification, http://www.usb.org/developers/docs/usbspec.zip

  28. Thomas, W.: On logical definability of trace languages. In: Diekert, V. (eds.) Proceedings of a workshop of the ESPRIT BRA No 3166: Algebraic and Syntactic Methods in Computer Science (ASMICS) 1989, Report TUM-I9002, Technical University of Munich, pp. 172–182 (1990)

    Google Scholar 

  29. Zielonka, W.: Note on finite asynchronous automata, R.A.I.R.O. Informatique Thorique et Applications 21, 99–135 (1987)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Genest, B., Muscholl, A., Kuske, D. (2004). A Kleene Theorem for a Class of Communicating Automata with Effective Algorithms. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds) Developments in Language Theory. DLT 2004. Lecture Notes in Computer Science, vol 3340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30550-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30550-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24014-3

  • Online ISBN: 978-3-540-30550-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics