Skip to main content

On the Monotone Circuit Complexity of Quadratic Boolean Functions

  • Conference paper
Algorithms and Computation (ISAAC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3341))

Included in the following conference series:

  • 1610 Accesses

Abstract

Several results on the monotone circuit complexity and the conjunctive complexity, i.e., the minimal number of AND gates in monotone circuits, of quadratic Boolean functions are proved. We focus on the comparison between single level circuits, which have only one level of AND gates, and arbitrary monotone circuits, and show that there is a huge gap between the conjunctive complexity of single level circuits and that of general monotone circuits for some explicit quadratic function. Almost tight upper bounds on the largest gap between the single level conjunctive complexity and the general conjunctive complexity over all quadratic functions are also proved. Moreover, we describe the way of lower bounding the single level circuit complexity, and give a set of quadratic functions whose monotone complexity is strictly smaller than its single level complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N.: Eigenvalues, Geometric Expanders, Sorting in Rounds, and Ramsey Theory. Combinatorica 6, 207–219 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Boppana, R.: The Monotone Circuit Complexity of Boolean Functions. Combinatorica 7(1), 1–22 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andreev, A.: On a Method for Obtaining Lower Bounds for the Complexity of Individual Monotone Functions. Soviet Math. Dokl. 31(3), 530–534 (1985)

    MATH  Google Scholar 

  4. Amano, K., Maruoka, A.: The Potential of the Approximation Method. SIAM J. Comput. 33(2), 433–447 (2004); Preliminary version in : Proc. of 37th FOCS 431–440 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berg, C., Ulfberg, S.: Symmetric Approximation Arguments for Monotone Lower Bounds Without Sunflowers. Computational Complexity 8(1), 1–20 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dunne, P.E.: The Complexity of Boolean Networks. Academic Press, London (1988)

    MATH  Google Scholar 

  7. Haken, A.: Counting Bottlenecks to Show Monotone P≠NP. In: Proc. of 36th FOCS, pp. 36–40 (1995)

    Google Scholar 

  8. Harnik, D., Raz, R.: Higher Lower Bounds for Monotone Size. In: Proc. of 32nd STOC, pp. 191–201 (2000)

    Google Scholar 

  9. Jukna, S.: Combinatorics of Monotone Computations. Combinatorica 19(1), 65–85 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jukna, S.: On Graph Complexity. In: ECCC TR04-004 (2004)

    Google Scholar 

  11. Lenz, K., Wegener, I.: The Conjunctive Complexity of Quadratic Boolean Functions. Theor. Comput. Sci. 81, 257–268 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lokam, S.V.: Graph Complexity and Slice Functions. Theory Comput. Syst. 36, 71–88 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mehlhorn, K.: Some Remarks on Boolean Sums. Acta Inf. 12, 371–375 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pudlák, P., Rődl, V., Savický, P.: Graph Complexity. Acta Inf. 25, 515–535 (1988)

    MATH  Google Scholar 

  15. Razborov, A.: Lower Bounds on the Monotone Complexity of Some Boolean Function. Soviet Math. Dokl. 31, 354–357 (1985)

    MATH  Google Scholar 

  16. Razborov, A.: On the Method of Approximation. In: Proc. 21th STOC, pp. 167–176 (1989)

    Google Scholar 

  17. Razborov, A., Rudich, S.: Natural Proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Simon, J., Tsai, S.C.: On the Bottleneck Counting Argument. Theor. Comput. Sci. 237(1-2), 429–437 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tarjan, R.: Complexity of Monotone Networks for Computing Conjunctions. Ann. Disc. Math. 2, 121–133 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tuza, Z.: Covering of Graphs by Complete Bipartite Subgraphs, Complexity of 0-1 Martix. Combinatorica 4, 111–116 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wegener, I.: More on the Complexity of Slice Functions. Theor. Comput. Sci. 43, 201–211 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner, Chichester (1987)

    MATH  Google Scholar 

  23. Weiss, J.: An Ω(n 3/2) Lower Bound on the Complexity of Boolean Convolution. Info. and Cont. 59, 84–88 (1983)

    Article  Google Scholar 

  24. Zwick, U.: On the Number of ANDs versus the Number of ORs in Monotone Boolean Circuits. Inf. Process. Let. 59, 29–30 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amano, K., Maruoka, A. (2004). On the Monotone Circuit Complexity of Quadratic Boolean Functions. In: Fleischer, R., Trippen, G. (eds) Algorithms and Computation. ISAAC 2004. Lecture Notes in Computer Science, vol 3341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30551-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30551-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24131-7

  • Online ISBN: 978-3-540-30551-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics