Skip to main content

Inner Rectangular Drawings of Plane Graphs

(Extended Abstract)

  • Conference paper
Algorithms and Computation (ISAAC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3341))

Included in the following conference series:

  • 1625 Accesses

Abstract

A drawing of a plane graph is called an inner rectangular drawing if every edge is drawn as a horizontal or vertical line segment so that every inner face is a rectangle. In this paper we show that a plane graph G has an inner rectangular drawing D if and only if a new bipartite graph constructed from G has a perfect matching. We also show that D can be found in time O(n 1.5/log n) if G has n vertices and a sketch of the outer face is prescribed, that is, all the convex outer vertices and concave ones are prescribed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Bhasker, J., Sahni, S.: A linear algorithm to find a rectangular dual of a planar triangulated graph. Algorithmica 3, 247–278 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Di Battista, G., Eades, P., Tamassia, R., Tollis, G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  4. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J. Computing 4, 507–518 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Feder, T., Motowani, R.: Clique partitions, graph compression and speeding-up algorithms. Proc. 23rd Ann. ACM Symp. on Theory of Computing, 123–133 (1991)

    Google Scholar 

  6. Francis, R.L., White, J.A.: Facility Layout and Location. In: Prentice Hall-CNew Jersey, Prentice-Hall, CNew Jersey (1974)

    Google Scholar 

  7. Garg, A., Tamassia, R.: A new minimum cost flow algorithm with applications to graph drawing. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 201–206. Springer, Heidelberg (1997)

    Google Scholar 

  8. He, X.: On finding the rectangular duals of planar triangulated graphs. SIAM J. Comput. 22(6), 1218–1226 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hochbaum, D.S.: Faster pseudoflow-based algorithms for the bipartite matching and the closure problems. In: Abstract, CORS/SCRO-INFORMS Joint Int. Meeting, Banff, Canada, May 16-19, p. 46 (2004)

    Google Scholar 

  10. Hochbaum, D.S., Chandran, B.G.: Further below the flow decomposition barrier of maximum flow for bipartite matching and maximum closure. In: Working paper (2004)

    Google Scholar 

  11. Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matching in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kant, G., He, X.: Regular edge-labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoret. Comput. Sci. 172, 175–193 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kozminski, K., Kinnen, E.: An algorithm for finding a rectangular dual of a planar graph for use in area planning for VLSI integrated circuits. In: Proc. of 21st DAC, Albuquerque, pp. 655–656 (1984)

    Google Scholar 

  14. Lai, Y.-T., LeinwandC, S.M.: A theory of rectangular dual graphs. Algorithmica 5, 467–483 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. LengauerC, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester (1990)

    Google Scholar 

  16. Miller, G.L., Naor, J.S.: Flows in planar graphs with multiple sources and sinks. SIAM J. Computing 24(5), 1002–1017 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Micali, S., Vazirani, V.V.: An O \((\sqrt{|{\it V}|}\cdot|{\it E|})\) algorithm for finding maximum matching in general graphs. In: Proc. 21st Annual Symposium on Foundations of Computer Science, pp. 17–27 (1980)

    Google Scholar 

  18. Miura, K., Miyazawa, A., Nishizeki, T.: Extended rectangular drawing of plane graphs with designated corners. In: Proc. Graph Drawing 2002. Lect. Notes in Computer Science, vol. 2528, pp. 256–267. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optinization. Prentice Hall, Englewood Cliffs (1982)

    Google Scholar 

  20. Rahman, M.S., Nakano, S., Nishizeki, T.: Rectangular drawings of plane graphs without designated corners. Computational Geometry 21, 121–138 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rahman, M.S., Nakano, S., Nishizeki, T.: Rectangular grid drawings of plane graphs. Comp. Geom. Theo. Appl. 10(3), 203–220 (1998)

    MATH  MathSciNet  Google Scholar 

  22. Sait, S.M., Youssef, H.: VLSI Physical Design Automation. World Scientific, Singapore (1999)

    Google Scholar 

  23. Sun, Y., Sarrafzadeh, M.: Floorplanning by graph dualization: L-shape modules. Algorithmica 10, 429–456 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory, pp. 43–69. Academic Press Canada, Canada (1984)

    Google Scholar 

  26. Tutte, W.T.: A short proof of the factor theorem for finite graphs. Canad. J. Math. 6, 347–352 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yeap, K., Sarrafzadeh, M.: Floor-planning by graph dualization: 2-concave rectilinear modules. SIAM J. Comput 22(3), 500–526 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miura, K., Haga, H., Nishizeki, T. (2004). Inner Rectangular Drawings of Plane Graphs. In: Fleischer, R., Trippen, G. (eds) Algorithms and Computation. ISAAC 2004. Lecture Notes in Computer Science, vol 3341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30551-4_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30551-4_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24131-7

  • Online ISBN: 978-3-540-30551-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics