Skip to main content

Approximation Algorithms for the Consecutive Ones Submatrix Problem on Sparse Matrices

  • Conference paper
Algorithms and Computation (ISAAC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3341))

Included in the following conference series:

  • 1718 Accesses

Abstract

A 0-1 matrix has the Consecutive Ones Property (C1P) if there is a permutation of its columns that leaves the 1’s consecutive in each row. The Consecutive Ones Submatrix (COS) problem is, given a 0-1 matrix A, to find the largest number of columns of A that form a submatrix with the C1P property. Such a problem has potential applications in physical mapping with hybridization data. This paper proves that the COS problem remains NP-hard for i) (2, 3)-matrices with at most two 1’s in each column and at most three 1’s in each row and for ii) (3, 2)-matrices with at most three 1’s in each column and at most two 1’s in each row. This solves an open problem posed in a recent paper of Hajiaghayi and Ganjali [12]. We further prove that the COS problem is 0.8-approximatable for (2, 3)-matrices and 0.5-approximatable for the matrices in which each column contains at most two 1’s and for (3, 2)-matrices.

The research was partially supported by the Biomedical Research Council of Singapore (BMRC01/1/21/19/140).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atkins, J., Middendorf, M.: On physical mapping and the consecutive ones property for sparse matrices. Discrete Applied Mathematics 71, 23–40 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alizadeh, F., Karp, R.M., Weisser, D.K., Zweig, G.: Physical mapping of chromosomes using unique probes. Journal of Computational Biology 2, 159–184 (1995)

    Article  Google Scholar 

  3. Booth, K.S., Lueker, G.S.: Test for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Systems Sci. 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deogun, J.S., Gopalakrishnan, K.: Consecutive retrieval property revisited. Information Processing Letters 69, 15–20 (1999)

    Article  MathSciNet  Google Scholar 

  5. Flammini, M., Gambosi, G., Salomone, S.: Boolean routing. Lecture Notes in Comput. Sci, vol. 725, pp. 219–233 (1993)

    Google Scholar 

  6. Foote, S., Vollrath, D., Hilton, A., Page, D.C.: The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science 258, 60–66 (1992)

    Article  Google Scholar 

  7. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Mathematics 15, 835–855 (1965)

    MATH  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  9. Ghosh, S.P.: File organization: the consecutive retrieval property. Commun. ACM 15, 802–808 (1972)

    Article  MATH  Google Scholar 

  10. Greenberg, D.S., Istrail, S.: Physical mapping by STS hybridization: algorithmic strategies and the challenge of software evaluation. J. Comput. Biol. 2, 219–273 (1995)

    Article  Google Scholar 

  11. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science 234, 59–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hajiaghayi, M.T., Ganjali, Y.: A note on the consecutive ones submatrix problem. Information Processing Letters 83, 163–166 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Halldórsson, M.M., Lau, H.C.: Low-degree graph partitioning via local search with applications to constraint satisfaction, max cut, and 3-coloring. J. Graph Algorithm Appl. 1(3), 1–13 (1997)

    Google Scholar 

  14. Lu, W.-F., Hsu, W.-L.: A test for the consecutive ones property on noisy data - application to physical mapping and sequence assembly. Journal of Computational Biology 10(5), 709–735 (2003)

    Article  Google Scholar 

  15. Kendall, D.G.: Incidence matrices, interval graphs and seriation in archaeology. Pacific J. Math. 28, 565–570 (1969)

    MATH  MathSciNet  Google Scholar 

  16. Lewis, J.M.: On the complexity of the maximum subgraph problem. In: Proc. 10th Ann. ACM Symp. on Theory of Computing, pp. 265–274 (1978)

    Google Scholar 

  17. Lovász, L.: On decomposition of graphs. Stud. Sci. Math. Hung. 1, 237–238 (1966)

    MATH  Google Scholar 

  18. Meidanis, J., Porto, O., Telles, G.P.: On the consecutive ones property. Discrete Applied Mathematics 88, 325–354 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mott, R., Grigoriev, A., Lehrach, H.: A algorithm to detect chimeric clones and randome noise in genomic mapping. Genetics 22, 482–486 (1994)

    Google Scholar 

  20. Pevzner, P.A.: Computational molecular biology. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Weis, S., Reischuk, R.: The complexity of physical mapping with strict chimerism. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 383–395. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proc. 10th Ann. ACM Symp. on Theory of Computing, pp. 253–264 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, J., Zhang, L. (2004). Approximation Algorithms for the Consecutive Ones Submatrix Problem on Sparse Matrices. In: Fleischer, R., Trippen, G. (eds) Algorithms and Computation. ISAAC 2004. Lecture Notes in Computer Science, vol 3341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30551-4_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30551-4_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24131-7

  • Online ISBN: 978-3-540-30551-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics