Skip to main content

A Slightly Improved Sub-cubic Algorithm for the All Pairs Shortest Paths Problem with Real Edge Lengths

  • Conference paper
Algorithms and Computation (ISAAC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3341))

Included in the following conference series:

Abstract

We present an \(O(n^{3}\sqrt{{\rm log log}n}/{\rm log} n)\) time algorithm for the All Pairs Shortest Paths (APSP) problem for directed graphs with real edge lengths. This improves, by a factor of about \(\sqrt{{\rm log} n}\), previous algorithms for the problem obtained by Fredman, Takaoka and Dobosiewicz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path problem. Journal of Computer and System Sciences 54, 255–262 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arlazarov, V.L., Dinic, E.C., Kronrod, M.A., Faradzev, I.A.: On economical construction of the transitive closure of a directed graph. In: Doklady Akademii Nauk SSSR, vol. 194, pp. 487–488 (1970); English translation in Soviet Mathematics Doklady 11, 1209–1210 (1970)

    Google Scholar 

  4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9, 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demetrescu, C., Italiano, G.F.: Fully dynamic transitive closure: Breaking through the O(n 2) barrier. In: Proc. of 41st FOCS, pp. 381–389 (2000)

    Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dobosiewicz, W.: A more efficient algorithm for the min-plus multiplication. International Journal of Computer Mathematics 32, 49–60 (1990)

    Article  MATH  Google Scholar 

  8. Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5(6), 345 (1962)

    Article  Google Scholar 

  9. Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM Journal on Computing 5, 49–60 (1976)

    Article  MathSciNet  Google Scholar 

  10. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34, 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  11. Furman, M.E.: Application of a method of rapid multiplication of matrices to the problem of finding the transitive closure of a graph. Doklady Akademii Nauk SSSR 194, 524 (1970); English translation in Soviet Mathematics Doklady 11, 1252 (1970)

    MathSciNet  Google Scholar 

  12. Galil, Z., Margalit, O.: All pairs shortest distances for graphs with small integer length edges. Information and Computation 134, 103–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length edges. Journal of Computer and System Sciences 54, 243–254 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hagerup, T.: Improved shortest paths on the word RAM. In: Proc. of 27th ICALP, pp. 61–72 (2000)

    Google Scholar 

  15. Johnson, D.B.: Efficient algorithms for shortest paths in sparse graphs. Journal of the ACM 24, 1–13 (1977)

    Article  MATH  Google Scholar 

  16. King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In: Proc. of 40th FOCS, pp. 81–91 (1999)

    Google Scholar 

  17. Munro, I.: Efficient determination of the transitive closure of a directed graph. Information Processing Letters 1(2), 56–58 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science 312(1), 47–74 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pettie, S., Ramachandran, V.: Computing shortest paths with comparisons and additions. In: Proc. of 13th SODA, pp. 267–276 (2002)

    Google Scholar 

  20. Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for directed graphs. In: Proc. of 43rd FOCS, pp. 679–688 (2002)

    Google Scholar 

  21. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and System Sciences 51, 400–403 (1995)

    Article  MathSciNet  Google Scholar 

  22. Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In: Proc. of 40th FOCS, pp. 605–614 (1999)

    Google Scholar 

  23. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13, 354–356 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  24. Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path problem. Information Processing Letters 43, 195–199 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM 46, 362–394 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Warshall, S.: A theorem on boolean matrices. Journal of the ACM 9(1), 11–12 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yuval, G.: An algorithm for finding all shortest paths using N 2.81 infinite-precision multiplications. Information Processing Letters 4, 155–156 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zwick, U.: Exact and approximate distances in graphs – a survey. In: Proc. of 9th ESA, pp. 33–48 (2001)

    Google Scholar 

  29. Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of the ACM 49, 289–317 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zwick, U. (2004). A Slightly Improved Sub-cubic Algorithm for the All Pairs Shortest Paths Problem with Real Edge Lengths. In: Fleischer, R., Trippen, G. (eds) Algorithms and Computation. ISAAC 2004. Lecture Notes in Computer Science, vol 3341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30551-4_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30551-4_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24131-7

  • Online ISBN: 978-3-540-30551-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics