Skip to main content

Separable Linkable Threshold Ring Signatures

  • Conference paper
Progress in Cryptology - INDOCRYPT 2004 (INDOCRYPT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3348))

Included in the following conference series:

Abstract

A ring signature scheme is a group signature scheme with no group manager to setup a group or revoke a signer. A linkable ring signature, introduced by Liu, et al. [20], additionally allows anyone to determine if two ring signatures are signed by the same group member (a.k.a. they are linked). In this paper, we present the first separable linkable ring signature scheme, which also supports an efficient thresholding option. We also present the security model and reduce the security of our scheme to well-known hardness assumptions. In particular, we introduce the security notions of accusatory linkability and non-slanderability to linkable ring signatures. Our scheme supports “event-oriented” linking. Applications to such linking criterion is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)

    Google Scholar 

  4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM conference on Computer and communications security, pp. 62–73. ACM Press, New York (1993)

    Chapter  Google Scholar 

  5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. Cryptology ePrint Archive, Report 2004/077 (2004), http://eprint.iacr.org/

  6. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Camenisch, J., Michels, M.: A group signature scheme based on an RSA-variant. rs RS-98-27, brics (1998)

    Google Scholar 

  8. Camenisch, J., Michels, M.: Separability and efficiency for generic group signature schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)

    Google Scholar 

  9. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Google Scholar 

  10. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Google Scholar 

  11. Cramer, R., Damgard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  12. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

    Google Scholar 

  13. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Fiat, A., Shamir, A.: How to prove yourself: Practical solution to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  15. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

    Google Scholar 

  16. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kiayias, A., Yung, M.: Group signatures: Provable security, efficient constructions, and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076 (2004), http://eprint.iacr.org/

  19. Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)

    Google Scholar 

  22. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wong, D.S., Fung, K., Liu, J.K., Wei, V.K.: On the RS-code construction of ring signature schemes and a threshold setting of RST. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 34–46. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S. (2004). Separable Linkable Threshold Ring Signatures. In: Canteaut, A., Viswanathan, K. (eds) Progress in Cryptology - INDOCRYPT 2004. INDOCRYPT 2004. Lecture Notes in Computer Science, vol 3348. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30556-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30556-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24130-0

  • Online ISBN: 978-3-540-30556-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics