Skip to main content

Self-tuning Control of Non-linear Systems Using Gaussian Process Prior Models

  • Chapter
Switching and Learning in Feedback Systems

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3355))

  • 1421 Accesses

Abstract

Gaussian Process prior models, as used in Bayesian non-parametric statistical models methodology are applied to implement a nonlinear adaptive control law. The expected value of a quadratic cost function is minimised, without ignoring the variance of the model predictions. This leads to implicit regularisation of the control signal (caution) in areas of high uncertainty. As a consequence, the controller has dual features, since it both tracks a reference signal and learns a model of the system from observed responses. The general method and its unique features are illustrated on simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, M., Seborg, D.E.: Self-tuning controllers for nonlinear systems. Automatica, 209–214 (1987)

    Google Scholar 

  2. Narendra, K., Parthasarathy, P.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1, 4–27 (1990)

    Article  Google Scholar 

  3. Liang, F., ElMargahy, H.: Self-tuning neurocontrol of nonlinear systems using localized polynomial networks with CLI cells. In: Proceedings of the American Control Conference, Baltimore, Maryland, pp. 2148–2152 (1994)

    Google Scholar 

  4. Chen, F., Khalil, H.: Adaptive control of a class of nonlinear discrete-time systems. IEEE Trans. Automatic Control 40, 791–801 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bittanti, S., Piroddi, L.: Neural implementation of GMV control shemes based on affine input/output models. Proc. IEEE Control Theory Appl., 521–530 (1997)

    Google Scholar 

  6. Fabri, S., Kadirkamanathan, V.: Dual adaptive control of stochastic systems using neural networks. Automatica 14, 245–253 (1998)

    Article  MathSciNet  Google Scholar 

  7. Filatov, N., Unbehauen, H., Keuchel, U.: Dual pole placement controller with direct adaptation. Automatica 33, 113–117 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Sbarbaro, D., Filatov, N., Unbehauen, H.: Adaptive dual controller for a class of nonlinear systems. In: Proceedings of the IFAC Workshop on Adaptive systems in Control and Signal Processing, Glasgow, U.K., pp. 28–33 (1998)

    Google Scholar 

  9. Murray-Smith, R., Sbarbaro, D.: Nonlinear adaptive control using non-paramtric gaussian process prior models. In: Proceedings of the 15th IFAC world congress, Barcelona, Spain (2002)

    Google Scholar 

  10. Wittenmark, R.: Adaptive dual control methods: An overview. In: Proceedings of the 5th IFAC Symposium on Adaptive systems in Control and Signal Processing, Budapest, pp. 67–92 (1995)

    Google Scholar 

  11. Filatov, N., Unbehauen, H.: Survey of adaptive dual control methods. Proc. IEEE Control Theory Appl., 119–128 (2000)

    Google Scholar 

  12. O’Hagan, A.: On curve fitting and optimal design for regression (with discussion). Journal of the Royal Statistical Society B, 1–42 (1978)

    Google Scholar 

  13. Williams, C.: Prediction with Gaussian process: From linear regression to linear prediction and beyond. In: Jordan, M. (ed.) Learning and Inference in Graphical Models, pp. 599–621. Kluwer, Dordrecht (1998)

    Google Scholar 

  14. Rasmussen, C.: Evaluation of Gaussian Process and other Methods for non-linear regression. PhD thesis, Department of Computer Science, University of Toronto (1996)

    Google Scholar 

  15. Murray-Smith, R., Johansen, T., Shorten, R.: On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures. In: Proceedings of the European Control Conference, Karlsruhe, Germany (1999) BA–14

    Google Scholar 

  16. Leith, D., Murray-smith, R., Leithhead, W.: Nonlinear structure identification: A gaussian process prior/velocity-based approach. In: Proceedings of Control 2000, Cambridge, U.K. (2000)

    Google Scholar 

  17. Murray-Smith, R., Girard, A.: Gaussian process priors with ARMA noise models. In: Proceedings of the Irish Sgnals and Systems Conference, Maynooth, Ireland, pp. 147– 152 (2001)

    Google Scholar 

  18. Girard, A., Rasmussen, C.E., Quinonero-Candela, J., Murray-Smith, R.: Gaussian process priors with uncertain inputs – application to multiple-step ahead time series forecasting. In Becker, S., Thrun, S., Obermayer, K., (eds.) Advances in Neural Information processing Systems 15 (2003)

    Google Scholar 

  19. Solak, E., Murray-Smith, R., Leithead, W.E., Leith, D.J., Rasmussen, C.E.: Derivative observations in Gaussian process models of dynamic systems. In Becker, S., Thrun, S., Obermayer, K., eds.: Advances in Neural Information processing Systems. vol. 15 (2003)

    Google Scholar 

  20. Neal, R.: Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Technical Report 9702, Department of Statistics, University of Toronto (1997)

    Google Scholar 

  21. Gibbs, M.: Bayesian Gaussian processes for regression and classification. PhD thesis, Cavendish Laboratory, University of Cambridge (1998)

    Google Scholar 

  22. MacKay, D.: Gaussian processes: A replacement for supervised neural networks? Denver, Colorado. Lectures notes for the NIPS (1997)

    Google Scholar 

  23. Shi, J., Murray-Smith, R., Titterington, D.M.: Bayesian regression and classification using mixtures of multiple Gaussian processes. International Journal of Adaptive Control and Signal Processing 17, 149–161 (2003)

    Article  MATH  Google Scholar 

  24. O’Hagan, A.: Some Bayesian numerical analysis. In: Bernardo, J., Berger, J., Dawid, A., Smith, F. (eds.) Bayesian Statistics, vol. 4, pp. 345–363. Oxford University Press, Oxford (2001)

    Google Scholar 

  25. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Seeger, M., Williams, C., Lawrence, D.: Fast forward selection to speed up sparse Gaussian process regression. In: Proceedings of the Ninth International Workshop on AI and Statistics (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sbarbaro, D., Murray-Smith, R. (2005). Self-tuning Control of Non-linear Systems Using Gaussian Process Prior Models. In: Murray-Smith, R., Shorten, R. (eds) Switching and Learning in Feedback Systems. Lecture Notes in Computer Science, vol 3355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30560-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30560-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24457-8

  • Online ISBN: 978-3-540-30560-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics