Skip to main content

Nonlinear Predictive Control with a Gaussian Process Model

  • Chapter
Switching and Learning in Feedback Systems

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3355))

  • 1571 Accesses

Abstract

Gaussian process models provide a probabilistic non-parametric modelling approach for black-box identification of nonlinear dynamic systems. The Gaussian processes can highlight areas of the input space where prediction quality is poor, due to the lack of data or its complexity, by indicating the higher variance around the predicted mean. Gaussian process models contain noticeably less coefficients to be optimized. This chapter illustrates possible application of Gaussian process models within model predictive control. The extra information provided by the Gaussian process model is used in predictive control, where optimization of the control signal takes the variance information into account. The predictive control principle is demonstrated via the control of a pH process benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allgöwer, F., Badgwell, T.A., Qin, S.J., Rawlings, J.B., Wright, S.J.: Nonlinear predictive control and moving horizon estimation - an introductory overview. In: Frank, P.M. (ed.) Advances in control: highlights of ECC 1999, pp. 391–449. Springer, Heidelberg (1999)

    Google Scholar 

  2. Allgöwer, F., Zheng, A. (eds.): Nonlinear Model Predictive Control, Progress in system and control theory, vol. 26. Birkhäuser, Basel (2000)

    Google Scholar 

  3. Girard, A., Rasmussen, C.E., Quinonero Candela, J., Murray-Smith, R. (eds.): Gaussian Process Priors With Uncertain Inputs & Application to Multiple-Step Ahead Time Series Forecasting, NIPS 15, Vancouver, Canada. MIT Press, Cambridge (2003)

    Google Scholar 

  4. Girard, A., Murray-Smith, R.: Gaussian Process: Prediction at a noisy input and application to iterative multiple-step ahead forecasting of time-series. In: Murray-Smith, R., Shorten, R. (eds.) Switching and Learning in Feedback Systems. Springer, Heidelberg (2004)

    Google Scholar 

  5. Gregorčič, G., Lightbody, G.: Internal model control based on a Gaussian process prior model. In: Proceedings of ACC 2003, Denver, CO, pp. 4981–4986 (2003)

    Google Scholar 

  6. Johansen, T.A., Foss, B.A., Sorensen, A.V.: Non-linear predictive control using local models - applied to a batch fermentation process. Control Eng. Practice 3(3), 389–396 (1995)

    Article  Google Scholar 

  7. Henson, M.A., Seborg, D.E.: Adaptive Nonlinear Control of a pH Neutralization Process. IEEE Trans. Control System Technology 2(3), 169–183 (1994)

    Article  Google Scholar 

  8. Kavšek-Biasizzo, K., Škrjanc, I., Matko, D.: Fuzzy predictive control of highly nonlinear pH process. Computers & chemical engineering 21, Supp. 1997, S613–S618 (1997)

    Google Scholar 

  9. Kerrigan, E.C., Maciejowski, J.M.: Soft constraints and exact penalty functions in model predictive control. In: Control 2000 Conference, Cambridge (2000)

    Google Scholar 

  10. Kocijan, J., Girard, A., Banko, B., Murray-Smith, R.: Dynamic Systems Identification with Gaussian Processes. In: Proceedings of 4th Mathmod, Vienna, pp. 776–784 (2003)

    Google Scholar 

  11. Kocijan, J., Likar, B., Banko, B., Girard, A., Murray-Smith, R., Rasmussen, C.E.: A case based comparison of identification with neural network and Gaussian process models. In: Preprints of IFAC ICONS Conference, Faro, pp. 137–142 (2003)

    Google Scholar 

  12. Kouvaritakis, B., Cannon, M. (eds.): Nonlinear predictive control, Theory and practice. IEEE Control Engineering Series, vol. 61. IEEE, Los Alamitos (2001)

    MATH  Google Scholar 

  13. Maciejowski J.M., Predictive control with constraints. Pearson Education Limited, Harlow, (2002)

    Google Scholar 

  14. Murray-Smith, R., Girard, A.: Gaussian Process priors with ARMA noise models. In: Irish Signals and Systems Conference, Maynooth, pp. 147–152 (2001)

    Google Scholar 

  15. Murray-Smith, R., Johansen, T.A., Shorten, R.: On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures. In: European Control Conference, Karlsruhe (1999), BA-14

    Google Scholar 

  16. Murray-Smith, R., Sbarbaro, D.: Nonlinear adaptive control using nonparametric Gaussian process prior models. In: Proc. IFAC Congress, Barcelona (2002)

    Google Scholar 

  17. Nørgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural networks for modeling and control of dynamic systems. Springer, London (2000)

    Google Scholar 

  18. Qin, S.J., Badgwell, T.A.: An overview of industrial model predictive control technology. In: Kantor, J.C., Garcia, C.E., Carnahan, B. (eds.) Fifthe international conference on Chemical process control, AChE and CACHE, pp. 232–256 (1997)

    Google Scholar 

  19. Qin, S.J., Badgwell, T.A.: An overview of nonlinear model predictive control applications. In: Allgöwer, F., Zheng, A. (eds.) Nonlinear model predictive control, pp. 369–392. Birkhauser Verlag (2000)

    Google Scholar 

  20. Rasmussen, C.E.: Evaluation of Gaussian Processes and other Methods for Non- Linear Regression, Ph.D. Disertation, Graduate department of Computer Science, University of Toronto, Toronto (1996)

    Google Scholar 

  21. Solak, E., Murray-Smith, R., Leithead, W.E., Leith, D.J., Rasmussen, C.E.: Derivative observations in Gaussian Process models of dynamic systems, NIPS 15, Vancouver, Canada. MIT Press, Cambridge (2003)

    Google Scholar 

  22. Williams, C.K.I.: Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 599–621. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  23. Young, R.E., Bartusiak, R.D., Fontaine, R.W.: Evolution of an industrial nonlinear model predictive controller. Preprints on Chemical Process Control - CPC VI, CACHE, Tucson, AZ, 399-401 (2001)

    Google Scholar 

  24. Zheng, A., Morari, M.: Stability of model predictive control with mixed constraints. IEEE Trans. Autom. Control 40(19), 1818–1823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kocijan, J., Murray-Smith, R. (2005). Nonlinear Predictive Control with a Gaussian Process Model. In: Murray-Smith, R., Shorten, R. (eds) Switching and Learning in Feedback Systems. Lecture Notes in Computer Science, vol 3355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30560-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30560-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24457-8

  • Online ISBN: 978-3-540-30560-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics