Skip to main content

Cluster-Based Parallel Simulation for Large Scale Molecular Dynamics in Microscale Thermophysics

  • Conference paper
Parallel and Distributed Processing and Applications (ISPA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3358))

Abstract

A cluster-based spatial decomposition algorithm for solving large-scale Molecular Dynamics simulation of thermophysics is proposed. Firstly, three kinds of domain division strategies are provided and their efficiency and scalability are analyzed. Secondly, a method called FLNP (Fast Location of Neighboring Particles) to accelerate the location of neighboring particles is proposed, which greatly reduces the cost of calculation and communication of interaction. Additionally, a new memory management technique called AMM (Adaptive Memory Management) is applied to meet the large memory requirement. The parallel algorithm based on these above technologies was implemented on a cluster of SMPs and tested on a system of 6,912,000 particles and achieved an efficiency of 77.0%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chou, F.C., Lukes, J.R., Liang, X.G., et al.: Molecular Dynamics in Microscale Thermophysical Engineering. Heat Transfer 10, 141–176 (1999)

    Google Scholar 

  2. XiaoLi, B., ZhiXin, L., ZengYuan, G.: Molecular dynamics study on thermal conductivity and discussion on some related topics. Journal of engineering thermophysics 2(22), 195–198 (2001)

    Google Scholar 

  3. Baker, M.: Cluster Computing White Paper - Final Release (Version 2.0), December 28 (2000)

    Google Scholar 

  4. Nakajima, K., Okuda, H.: Parallel iterative solvers for unstructured grids using a directive/MPI hybrid programming model for the GeoFEM platform on SMP cluster architectures. Concurrency Computat.: Pract. Exper. 14, 411 (2002)

    Article  MATH  Google Scholar 

  5. Haile, J.M.: Molecular Dynamics Simulation Elementary Methods (Wiley Professional Paperback Edition Published 1997)

    Google Scholar 

  6. Greenwell, D.L., Kalia, R.K., Patterson, J.C., Vashishta, P.: Molecular Dynamics Algorithm on the connection machine. Int. J. High Speed Computing 1(2), 321–328 (1989)

    Article  MATH  Google Scholar 

  7. Smith, W.: A replicated data molecular dynamics strategy for the parallel Ewald sum. Comp. Phys. Comm. 67(3), 392–406 (1992)

    Article  Google Scholar 

  8. Smith, W., Forester, T.R.: Parallel Macromolecular simulations and the replicated data strategy. Comp. Phys. Comm. 79(1), 52–62 (1994)

    Article  Google Scholar 

  9. Okunbor, D.: Integration methods for N-body problems. In: Proceedings of the Second International Conference On Dynamics Systems (1996)

    Google Scholar 

  10. Murty, R., Okunbor, D.: Efficient Parallel Algorithms For Molecular Dynamics Simulations. Parallel Computing 25(3), 217–230 (1999)

    Article  MATH  Google Scholar 

  11. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  MATH  Google Scholar 

  12. Hayashi, R., Horiguchi, S.: Parallel molecular dynamics simulations of polymers (in Japanese). Transactions of Information Processing Society of Japan 39(6), 1775–1781 (1998)

    Google Scholar 

  13. Jiwu, S., Weimin, Z., et al.: Parallel computing for lattice Monte Carlo simulation of large-scale thin film growth. Science in China(Series F) 45(2) (2002)

    Google Scholar 

  14. Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon, J.K., Walker, D.W.: Solving Problems On Concurrent Processors, vol. I. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  15. Hockney, R.W., Goel, S.P., Eastwood, J.W.: Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14(48) (1974)

    Google Scholar 

  16. Verlet, L.: Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159(98) (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shu, J., Wang, B., Zheng, W. (2004). Cluster-Based Parallel Simulation for Large Scale Molecular Dynamics in Microscale Thermophysics. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds) Parallel and Distributed Processing and Applications. ISPA 2004. Lecture Notes in Computer Science, vol 3358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30566-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30566-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24128-7

  • Online ISBN: 978-3-540-30566-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics