Skip to main content

Inherent Limitations of Visual Search and the Role of Inner-Scene Similarity

  • Conference paper
Attention and Performance in Computational Vision (WAPCV 2004)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3368))

Abstract

This work focuses on inner-scene objects similarity as an information source for directing attention and for speeding-up visual search performed by artificial vision systems. A scalar measure (similar to Kolmogorov’s ε-covering of metric spaces) is suggested for quantifying how much a visual search task can benefit from this source of information. The measure provided is algorithm independent, providing an inherent measure for tasks’ difficulty, and can be also used as a predictor for search performance. We show that this measure is a lower bound on all search algorithms’ performance and provide a simple algorithm that this measure bounds its performance from above. Since calculating a metric cover is NP-hard, we use both a heuristic and a 2-approximation algorithm for estimating it, and test the validity of our theorem on some experimental search tasks. This work can be considered as an attempt to quantify Duncan and Humphreys’ similarity theory [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avraham, T., Lindenbaum, M.: Dynamic visual search using inner scene similarity - algorithms and bounds. Technion. Computer Science Departement. Technical Report CIS-2003-02 (May 2003)

    Google Scholar 

  2. Avraham, T., Lindenbaum, M.: A probabilistic estimation approach for dynamic visual search. In: Proceedings of WAPCV 2003 - First International Workshop on Attention and Performance in Computer Vision, pp. 1–8 (April 2003)

    Google Scholar 

  3. Avraham, T., Lindenbaum, M.: Dynamic visual search using inner scene similarity - algorithms and inherent limitations. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 58–70. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Bauer, B., Jolicoeur, P., Cowan, W.B.: Visual search for colour targets that are or are not linearly separable from distractors. Vision Research 36, 1439–1465 (1996)

    Article  Google Scholar 

  5. Duncan, J., Humphreys, G.W.: Visual search and stimulus similarity. Psychological Review 96, 433–458 (1989)

    Article  Google Scholar 

  6. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38(2-3), 293–306 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Humphreys, G.W., Muller, H.J.: Search via recursive rejection (serr): A connectionist model of visual search. Cognitive Psychology 25, 43–110 (1993)

    Article  Google Scholar 

  8. Itti, L.: Models of bottom-up and top-down visual attention. Thesis (January 2000)

    Google Scholar 

  9. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. PAMI 20(11), 1254–1259 (1998)

    Google Scholar 

  10. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural vircuity. Human Neurobiology 4, 219–227 (1985)

    Google Scholar 

  11. Kolmogorov, A.N., Tikhomirov, V.M.: epsilon-entropy and epsilon-capacity of sets in functional spaces. AMS Translations. Series 2 17, 277–364 (1961)

    Google Scholar 

  12. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (July 2001)

    Google Scholar 

  13. Neisser, U.: Cognitive Psychology. Appleton-Century-Crofts, New York (1967)

    Google Scholar 

  14. Nene, S., Nayar, S., Murase, H.: Columbia object image library (coil-100). Technical Report CUCS-006-96, Department of Computer Science, Columbia University (February 1996)

    Google Scholar 

  15. Rao, R.P.N., Ballard, D.H.: An active vision architecture based on iconic representations. Artificial Intelligence 78(1–2), 461–505 (1995)

    Article  Google Scholar 

  16. Rimey, R.D., Brown, C.M.: Control of selective perception using bayes nets and decision theory. International Journal of Computer Vision 12, 173–207 (1994)

    Article  Google Scholar 

  17. Rosenholtz, R.: A simple saliency model predicts a number of motion popout phenomena. Vision Research 39, 3157–3163 (1999)

    Article  Google Scholar 

  18. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7, 11–32 (1991)

    Article  Google Scholar 

  19. Tagare, H., Toyama, K., Wang, J.G.: A maximum-likelihood strategy for directing attention during visual search. IEEE PAMI 23(5), 490–500 (2001)

    Google Scholar 

  20. Torralba, A., Sinha, P.: Statistical context priming for object detection. In: Proceedings of the Eighth International Conference On Computer Vision, pp. 763–770 (2001)

    Google Scholar 

  21. Treisman, A., Gelade, G.: A feature integration theory of attention. Cognitive Psychology 12, 97–136 (1980)

    Article  Google Scholar 

  22. Tsotsos, J.K.: On the relative complexity of active versus passive visual search. IJCV 7(2), 127–141 (1992)

    Article  Google Scholar 

  23. Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y., Davis, N., Nuflo, F.J.: Modeling visual attention via selective tuning. Artificial intelligence 78(1-2), 507–545 (1995)

    Article  Google Scholar 

  24. Wixson, L.E., Ballard, D.H.: Using intermediate objects to improve the efficiency of visual-search. IJCV 12(2-3), 209–230 (1994)

    Article  Google Scholar 

  25. Wolfe, J.M.: Guided search 2.0: A revised model of visual search. Psychonomic Bulletin and Review 1(2), 202–238 (1994)

    Article  Google Scholar 

  26. Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avraham, T., Lindenbaum, M. (2005). Inherent Limitations of Visual Search and the Role of Inner-Scene Similarity. In: Paletta, L., Tsotsos, J.K., Rome, E., Humphreys, G. (eds) Attention and Performance in Computational Vision. WAPCV 2004. Lecture Notes in Computer Science, vol 3368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30572-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30572-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24421-9

  • Online ISBN: 978-3-540-30572-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics