
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Open-Source PC-Based Software Routers: a Viable Approach to High-Performance Packet Switching / Bianco, Andrea;
Finochietto, J. M.; Galante, G.; Mellia, Marco; Neri, Fabio. - STAMPA. - 1:(2005), pp. 353-366. (Intervento presentato al
convegno Third Internation Workshop on QoS in Multiservice IP Networks tenutosi a Catania, Italy nel Feb 2005)
[10.1007/978-3-540-30573-6_27].

Original

Open-Source PC-Based Software Routers: a Viable Approach to High-Performance Packet Switching

Publisher:

Published
DOI:10.1007/978-3-540-30573-6_27

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1413988 since:

Springer-Verlag

Open-Source PC-Based Software Routers: A Viable
Approach to High-Performance Packet Switching�

Andrea Bianco1, Jorge M. Finochietto1, Giulio Galante2,
Marco Mellia1, and Fabio Neri1

1 Dipartimento di Elettronica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

{bianco,finochietto,mellia,neri}@polito.it
2 Networking Lab, Istituto Superiore Mario Boella,

via Pier Carlo Boggio 61, 10138 Torino, Italy
galante@ismb.it

Abstract. We consider IP routers based on off-the-shelf personal computer (PC)
hardware running the Linux open-source operating system. The choice of build-
ing IP routers with off-the-shelf hardware stems from the wide availability of
documentation, the low cost associated with large-scale production, and the con-
tinuous evolution driven by the market. On the other hand, open-source software
provides the opportunity to easily modify the router operation so as to suit ev-
ery need. The main contribution of the paper is the analysis of the performance
bottlenecks of PC-based open-source software routers and the evaluation of the
solutions currently available to overcome them.

1 Introduction

Routers are the key components of IP packet networks. The call for high-performance
switching and transmission equipment in the Internet keeps growing due to the increas-
ing diffusion of information and communication technologies, and the deployment of
new bandwidth-hungry applications and services such as audio and video streaming.
So far, routers have been able to support the traffic growth by offering an ever increas-
ing switching speed, mostly thanks to the technological advances of microelectronics
granted by Moore’s Law.

Contrary to what happened for PC architectures, where, at least for hardware com-
ponents, de-facto standards were defined, allowing the development of an open multi-
vendor market, networking equipment in general, and routers in particular, have always
seen custom developments. Proprietary architectures are affected by incompatibilities in
configuration and management procedures, scarce programmability, lack of flexibility,
and the cost is often much higher than the actual equipment value.

Appealing alternatives to proprietary network devices are the implementations of
software routers based on off-the-shelf PC hardware, which have been recently made
available by the open-source software community, such as Linux [1], Click [2] and
FreeBSD [3] for the data plane, as well as Xorp [4] and Zebra [5] for the control plane,

� This work has been carried out in the framework of EURO, a project partly funded by the
Italian Ministry of University, Education, and Research (MIUR).

1

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: Individually Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [439.37 666.142] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /PageByPage /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

just to name a few. Their main benefits are: wide availability of multi-vendor hard-
ware and documentation on their architecture and operations, low cost and continuous
evolution driven by the PC market’s economy of scale.

Criticisms to software routers are focused on limited performance, instability of
software, lack of system support, scalability problems, lack of functionalities. Perfor-
mance limitations can be compensated by the natural evolution of the performance of
the PC architecture. Current PC-based routers and switches have the potentiality for
switching up to a few Gbit/s of traffic, which is more than enough for a large number
of applications. Today, the maturity of open-source software overcomes most problems
related to stability and availability of software functionalities. It is therefore important
to explore the intrinsic limitations of software routers.

In this paper we focus only on the data plane, ignoring all the (fundamental) issues
related to management functions and to the control plane. Our aim is to assess the rout-
ing performance and the hardware limitations of high-end PCs equipped with several
Gigabit Ethernet network interface cards (NICs) running at both 1 Gbit/s and 100 Mbit/s
under the Linux operating system.

The remainder of the paper is organized as follows. Provided that the Linux IP stack
is implemented partly in hardware and partly in software in the operating system ker-
nel, in Sect. 2 we give an overview of the architecture and the operation of hardware
commonly available on high-end PCs, whereas in Sect. 3 we describe the current im-
plementation of the IP stack in the Linux kernel. In Sect. 4 we describe our experimental
setup, the tests performed, and the results obtained. Finally, in Sect. 5 we conclude and
give some directions for future work.

2 PC Architectural Overview

A bare bones PC consists of three main building blocks: the central processing unit
(CPU), random access memory (RAM), and peripherals, glued together by the chipset,
which provides complex interconnection and control functions.

As sketched in Fig. 1, the CPU communicates with the chipset through the system
bus, also known as front side bus (FSB) in Intel’s jargon. The RAM provides temporary
data storage for the CPU as long as the system is on, and can be accessed by the memory
controller integrated on the chipset through the memory bus (MB). The peripherals
are connected to the chipset by the peripheral component interconnect (PCI) shared
bus, which allows to expand the system with a huge number of devices, including, but
not limited to, permanent data storage units, additional expansion buses, video adapter
cards, sound cards, and NICs. All interconnections are bidirectional, but, unfortunately,
use different parallelisms, protocols, and clock speeds, requiring the implementation of
translation and adaption functions on the chipset.

The following sections detail the operation of the CPU, the RAM the PCI bus, NICs
and explain how the these components can be used to implement a software router.

2.1 CPU

State-of-the-art CPU cores run at frequencies up to 3.8 GHz, whereas next-generation
CPUs run at 4 GHz. The front side bus is 64-bit wide and runs at either 100 MHz or

2

. NIC N

CPU MEMORY

FSB MB

CHIPSET

PCI BUS

NIC 2NIC 1

Fig. 1. PC architectural overview.

133 MHz with quad pumped transfers, meaning that data are transferred at a speed
four times higher than the nominal clock speed. Therefore, the peak transfer bandwidth
achievable ranges between 3.2 Gbyte/s and 4.2 Gbyte/s. Note that in Intel’s commercial
jargon, systems with FSBs clocked at 100 MHz and 133 MHz are marketed as running
at 400 MHz and 533 MHz, because of quad pumping. High-end PCs are equipped with
chipsets supporting multiple CPUs connected in a symmetric multiprocessing (SMP)
architecture. Typical configurations comprise 2, 4, 8 or even 16 identical CPUs.

2.2 RAM

The memory bus is usually 64-bit wide and runs at either 100 MHz or 133 MHz with
double pumped transfers, meaning that data are transferred on both rising and falling
clock edges. Thus, the peak transfer bandwidth available ranges between 1.6 Gbyte/s
and 2.1 Gbyte/s, and, in Intel’s jargon, the two solutions are named PC1600 and PC2100
double data rate (DDR) RAM. In high-end PCs the memory bandwidth is doubled
bringing the bus width to 128 bits by installing memory banks in pairs. Note that this
allows to match the memory bus peak bandwidth to that of the front side bus.

2.3 PCI Bus

Depending on the PCI protocol version implemented on the chipset and the number
of electrical paths connecting the components, the bandwidth available on the bus
ranges from 1 Gbit/s for PCI 1.0, when operating at 33 MHz with 32-bit parallelism,
to 2 Gbyte/s for PCI-X 266, when transferring 64 bits on both rising and falling edges
of a double pumped 133 MHz clock.

The PCI protocol is designed to efficiently transfer the contents of large blocks of
contiguous memory locations between the peripherals and the RAM, without requiring
CPU intervention. Data and address lines are time multiplexed, therefore each transac-
tion starts with an addressing cycle, continues with the actual data transfer which may
take several data cycles, and ends with a turnaround cycle, where all signal drivers are
three-stated waiting for the next transaction to begin. Some more cycles may be wasted
if the target device addressed by the transaction has a high initial latency and intro-
duces several wait states. This implies that the throughput experienced by the actual
data transfer increases as the burst length gets larger, because the almost constant-size
protocol overhead becomes more and more negligible with respect to useful data.

3

As the bus is shared, no more than one device can act as a bus-master at any given
time; therefore, an arbiter is included in the chipset to regulate the access and fairly
share the bandwidth among the peripherals.

2.4 NICs

Gigabit Ethernet and Fast Ethernet NICs are high-performance PCI cards equipped with
at least one direct memory access (DMA) engine that can operate as bus-masters to of-
fload the CPU from performing back-and-forth bulk data transfers between their inter-
nal memory and the RAM. An adequate amount of on-card transmission (TX)/reception
(RX) first-in first-out (FIFO) buffer memory is still needed to provide storage for data
directed to (received from) the RAM.

The most common operation mode for streaming data transfers is scatter-gather
DMA, which allows to spread small buffers all over the available RAM rather then
allocating a single large contiguous RAM region which may be difficult, if not im-
possible, to find because of memory fragmentation. During RAM-to-card transfers, the
card fetches data gathering them from sparse RAM buffers; conversely, in the opposite
direction, data originating from the card are scattered over available RAM buffers.

The simplest way to implement scatter-gather DMA is with two linked lists, one for
transmission which requires RAM-to-card transfers and the other for reception which
triggers card-to-RAM transfers. Each list element, dubbed descriptor, contains a pointer
to the first location of the RAM buffer allocated by the operating system, the buffer size,
a command to be executed by the card on the data, a status field detailing the result of
such operation, and a pointer to the next descriptor in the list, possibly null if this is
the last element. Alternatively, descriptors can be organized in two fixed-size arrays,
managed by the card as circular buffers, named rings. The performance improvement
granted by this solution is twofold: first, descriptors become smaller; second, descrip-
tors on the same ring are contiguous and can be fetched in one burst, allowing for a
higher PCI bus efficiency.

During normal operation, the card i) fetches descriptors from both rings to deter-
mine which RAM buffers are available for reading/writing data and how the related
data must be processed, ii) transfers the contents of the buffers, iii) performs the re-
quired operations, and iv) updates the status in the corresponding descriptors.

Outgoing packets are read from buffers on the transmission ring, whereas incom-
ing packets are written to buffers on the reception ring. Buffers pointed by descriptors
are usually sized to fit both incoming and outgoing packets, even though, it is often
possible to split outgoing packets among multiple buffers. Transmission stops when-
ever the transmission ring empties, whereas incoming packets are dropped by the card
either when the reception ring fills up or when the on-card FIFO overruns because of
prolonged PCI bus unavailability due to congestion.

Each NIC is connected to one (possibly shared) hardware interrupt request (IRQs)
line and collects in a status register information on TX/RX descriptor availability and
on events needing attention from the operating system. It is then possible to selectively
enable the generation of hardware IRQs to notify the CPU when a given bit in the status
register is cleared/set to indicate an event, so that the operating system can take the
appropriate action. Interrupts are usually generated when the reception ring is either

4

full or almost full, when the transmission ring is either empty or almost empty, and
after every packet transmission/reception.

In addition, it is usually possible to turn IRQ generation off altogether, leaving to
the operating system the burden of periodically polling the hardware status register and
react accordingly. More details on these packet reception schemes are provided later in
the paper.

2.5 Putting All the Pieces Together

The hardware available on a PC allows to implement a shared bus, shared memory
router, where NICs receive and store packets in the main RAM, the CPU routes them to
the correct output interface, and NICs fetch packets from the RAM and transmit them
on the wire. Therefore, each packet travels twice on the PCI bus, halving the bandwidth
effectively available for NIC-to-NIC packet flows.

3 Linux Network Stack Implementation

The networking code in the Linux kernel is highly modular: the hardware-independent
IP stack has a well defined application programming interface (API) toward the hard-
ware-dependent device driver, which is the glue making the IP layer operate with the
most diverse networking hardware.

When a NIC is receiving traffic, the device driver pre-allocates packet buffers on
the reception ring and, after they have been filled by the NIC with received packets,
hands them to the IP layer. The IP layer examines each packet’s destination address,
determines the output interface, and invokes the device driver to enqueue the packet
buffer on the transmission ring. Finally, after the NIC has sent a packet, the device driver
unlinks the packet buffer from the transmission ring. The following sections discuss
briefly the operations performed by the memory management subsystem, the IP layer,
and detail how the network stack is invoked upon packet reception.

3.1 Memory Management

In the standard Linux network stack implementation, buffer management is performed
resorting to the operating system general-purpose memory management system, which
requires CPU expensive operations. Some time can be saved if the buffer deallocation
function is modified so as to store unused packet buffers on a recycling list in order
to speed up subsequent allocations, allowing the device driver to turn to the slower
general-purpose memory allocator only when the recycling list is empty.

This has been implemented in a patch [6] for 2.6 kernels, referred to as buffer re-
cycling patch in the reminder of the paper, which adds buffer recycling functionalities
to the e1000 driver for Intel Gigabit Ethernet NICs. As of today, the buffer recycling
patch has not been officially included in the kernel source, but it could be easily inte-
grated in the core networking system code, making it available for all network device
drivers without any modification to their source code.

5

3.2 IP Layer

The Linux kernel networking code implements a standard RFC 1812 [7] router. Af-
ter a few sanity checks such as IP header checksum verification, packets that are not
addressed to the router are processed by the routing function which determines the IP
address of the next router to which they must be forwarded, and the output interface on
which they must be enqueued for transmission.

The kernel implements an efficient routing cache based on a hash table with colli-
sion lists; the number of hash entries is determined as a function of the RAM available
when the networking code is initialized at boot time. The route for outgoing packets is
first looked up in the routing cache by a fast hash algorithm, and, in case of miss, the
whole routing table stored in the forwarding information base (FIB) is searched by a
(slower) longest prefix matching algorithm.

Next, the time-to-live (TTL) is decremented, the header checksum is updated and
the packet is enqueued for transmission in the RAM on the drop-tail TX queue asso-
ciated with the correct output interface. Then, whenever new free descriptors become
available, packets are transferred from the output TX queue to the transmission ring
of the corresponding NIC. The maximum number of packets that can be stored in the
output TX queue is limited and can be easily modified at runtime; the default maximum
length for current Linux implementations is 1000 packets.

Note that, for efficiency’s sake, whenever it is possible, packet transfers inside the
kernel networking code are performed by moving pointers to packet buffers, rather
than actually copying buffers’ contents. For instance, packet forwarding is implemented
unlinking the pointer to a buffer containing received packets from the reception ring,
handing it to the IP layer for routing, linking it to the output TX queue, and moving
it to the NIC transmission ring before processing the next pointer. This is commonly
referred to as zero-copy operation.

3.3 Stack Activation Methods

Interrupt. NICs notify the operating system of packet reception events by generating
hardware IRQs for the CPU. As shown in Fig. 2, the CPU invokes the driver hard-
ware IRQ handler which acknowledges the NIC request, transfers all packets currently
available on the reception ring to the kernel backlog queue and schedules the network
software-IRQ (softIRQ) handler for later execution.

SoftIRQs are commonly used by many Unix flavors for deferring to a more appro-
priate time the execution of complex operations that have a lower priority than hardware
IRQs and that cannot be safely carried out by the IRQ handler, because they might orig-
inate race conditions, rendering kernel data structures inconsistent.

The network softIRQ handler extracts packets from the backlog queue, and hands
them to the IP layer for processing as described in Sect. 3.2. There is a limit on the
maximum number of packets that can be stored in the backlog queue by the IRQ han-
dler so as to upper bound the time the CPU spends for processing packets. When the
backlog queue is full, the hardware IRQ handler just removes incoming packets from
the reception ring and drops them. In current Linux implementations, the default size
of the backlog queue is 300 packets.

6

TX RING

− Addr Lookup − TTL decrease

FORWARDINGROUTING

− Checksum Update

Backlog Queue CHECKSUM

RX RING

Hardware IRQ Software IRQ

Tx Queue

Receiver Transmitter

Fig. 2. Operation of the interrupt-driven network stack.

Under heavy reception load, a lot of hardware IRQs are generated from NICs. The
backlog queue fills quickly and all CPU cycles are wasted extracting packets from the
reception ring just for dropping them after realizing that the backlog queue is full. As a
consequence, the softIRQ handler, having lower priority than the hardware IRQ handler,
never gets a chance of draining packets from the backlog queue, practically zeroing the
forwarding throughput. This phenomenon was first described in [8] and dubbed receive
livelock.

Hardware IRQs are also used to notify the operating system of the transmission of
packets enqueued on the transmission ring so that the driver can free the corresponding
buffers and move new packets from the TX queue to the transmission ring.

Interrupt Moderation

Most modern NICs provide interrupt moderation or interrupt coalescing mechanisms
(see, for example, [9]) to reduce the number of IRQs generated when receiving packets.
In this case, interrupts are generated only after a batch of packets has been transmit-
ted/received, or after a timeout from the last IRQ generated has expired, whichever
comes first. This allows to relieve the CPU from IRQ storms generated during high
traffic load, improving the forwarding rate.

NAPI. Receive livelock can be easily avoided by disabling IRQ generation on all NICs
and letting the operating system decide when to poll the NIC hardware status register
to determine whether new packets have been received. The NIC polling frequency is
determined by the operating system and, as a consequence, a polling-driven stack may
increase the packet forwarding latency under light traffic load.

The key idea introduced in [8] and implemented in the Linux network stack in [10]
with the name new API (NAPI), is to combine the robustness at high load of a polling-
driven stack with the responsiveness at low load of an interrupt-driven stack.

This can be easily achieved by enabling IRQ status notification on all NICs as in an
interrupt-activated stack. The driver IRQ handler is modified so that, when invoked after
a packet reception event, it enables polling mode for the originating NIC by switching
IRQ generation off and by adding that NIC to the NAPI polling list. It then schedules
the network softIRQ for execution as usual.

As shown in Fig. 3, a new function poll is added to the NIC driver to i) remove
packets from the reception ring, ii) hand them to the IP layer for processing as described
in Sect. 3.2, iii) refill the reception ring with empty packet buffers, iv) detach from the

7

RX RING TX RING

− Addr Lookup − TTL decrease

CHECKSUM FORWARDINGROUTING

− Checksum Update

Poll

Tx queue

Receiver Transmitter

Fig. 3. Operation of the NAPI network stack.

transmission ring and free packets buffers after their content has been sent on the wire.
The poll function never removes more than a quota Q of packets per invocation from
the NIC reception ring.

The network softIRQ is modified so as to run poll on all interfaces on the polling
list in a round-robin fashion to enforce fairness. No more than a budget B of packets can
be extracted from NIC reception rings in a single invocation of the network softIRQ, in
order to limit the time the CPU spends for processing packets. This algorithm produces
a max-min fair share of packet rates among the NICs on the polling list.

Whenever poll extracts less than Q packets from a NIC reception ring, it reverts
such NIC to interrupt mode by removing it from the polling list and re-enabling IRQ
notification. The default values for B and Q in current Linux implementations are,
respectively, 300 and 64.

Currently, not all NIC drivers are NAPI aware, but it is easy to write the NAPI poll
handler by just borrowing code from the hardware IRQ handler.

4 Performance Evaluation

In Sect. 4.1, we describe the testbed setup we used and report some preliminary re-
sults from experiments on the NIC maximum reception and transmission rate, which
motivated the adoption of a commercial router tester for subsequent tests.

Many metrics can be considered when evaluating the forwarding performance of
a router: for instance, the RFC 2544 [11] defines both steady-state indices such as the
maximum lossless forwarding rate, the packet loss rate, the packet delay and the packet
jitter, as well as transient quantities such as the maximum-length packet burst that can
be forwarded at full speed by the router without losses. In this paper, however, the dif-
ferent configurations were compared in terms of the steady-state saturation forwarding
throughput obtained when all router ports are offered the maximum possible load. We
considered both unidirectional flows, where each router port, at any given time, only
receives or transmits data, as well as the bidirectional case, where all ports send and re-
ceive packets at the same time. All the results reported are the average of five 30-second
runs of each test.

The IP routing table used in all tests is minimal and only contains routes to the
class-C subnetworks reachable from each port. As a consequence, the number of IP
destination addresses to which the router-tester sends packets on each subnetwork is
always less than 255, so that the routing cache never overflows and the routing overhead
is marginal.

8

4.1 Testbed Setup

The router tested is based on a high-end PC with a SuperMicro X5DPE-G2 mainboard
equipped with one 2.8 GHz Intel Xeon processor and 1 Gbyte of PC1600 DDR RAM
consisting of two interleaved banks, so as to bring the memory bus transfer rate to
3.2 Gbyte/s.

Almost all experiments were performed running Linux 2.4.21, except for buffer
recycling tests, which were run on a patched 2.6.1 kernel. No major changes occurred in
the networking code between kernel version 2.4 and 2.6. The only modification needed
to make a fair performance comparison between 2.6 and 2.4 kernels is to lower the
clock interrupt frequency from 1000 Hz (default for 2.6 kernels) to 100 Hz (default for
2.4 kernels).

Although Fast and Gigabit Ethernet NICs offer a raw rate of 100 Mbit/s and 1 Gbit/s,
respectively, the data throughput at IP layer actually achievable may be much lower
because of physical and data-link layer overhead, due to Ethernet overhead. Indeed, be-
sides MAC addresses, protocol type and CRC, also the initial 8-bytes trailer and the final
12-byte minimum inter-packet gap, must be taken into account. Carried payload ranges
from a 46-bytes minimum size up to 1500-bytes of maximum size. As a consequence,
Gigabit (Fast) Ethernet NICs running at full speed must handle a packet rate ranging
from 81 274 (8 127) to 1 488 095 (148 809)packets/s as the payload size decreases from
1500 byte to 46 byte.

Most of the results presented in this section were obtained for minimum-size Ether-
net frames because they expose the effect of the per-packet processing overhead. How-
ever, we also ran a few tests for frame sizes up to the maximum, in order to check that
both the PCI bus and the memory subsystem could withstand the increased bandwidth
demand.

A number of tests were performed on Gigabit Ethernet NICs produced by Intel,
3Com (equipped with a Broadcom chipset), D-Link and SysKonnect, using open-source
software generators (see [12] for a good survey) operating either in user- or in kernel-
space. We compared rude [13], which operates in user-space, with udpgen [14] and
packetgen [15], that, instead, live in kernel-space. The aim was to assess the max-
imum transmission/reception rate of each NIC-driver pair, when only one NIC was
active and no packet forwarding was taking place. In order to allow for a fair compar-
ison and to avoid a state-space explosion we left all driver parameters to their default
values. The highest generation rate of 650 000 minimum-size Ethernet frames per sec-
ond (corresponding to almost 500 Mbit/s) was achieved by packetgen on Intel PRO
1000 Gigabit Ethernet NICs running with the Intel e1000 driver [16] version 5.2.52.

As it was not possible to generate 64-byte Ethernet frames at full speed on any of
the off-the-shelf NIC we considered, we ran all subsequent tests on an Agilent N2X
RouterTester 900 [17], equipped with 2 Gigabit Ethernet and 16 Fast Ethernet ports,
that can transmit and receive at full rate even 64-byte Ethernet frames.

The maximum reception rate of the different NICs was also evaluated, when only
one NIC was active and packet forwarding was disabled, by generating 64-byte Ethernet
frames with the RouterTester, and counting the packets received by the router with
udpcount [14]. Again, the best results were obtained with the e1000 driver and Intel
PRO 1000 NICs, which were able to receive a little bit more than 1 000 000packets/s

9

on an IRQ stack and about 1 100 000packets/s on a NAPI stack. Given the superior
performance of Intel NICs, all tests in the next two sections were performed equipping
the router with seven Intel PRO 1000 MT dual port Gigabit Ethernet NICs running at
either 1 Gbit/s or 100 Mbit/s. All driver parameters were left to their default values,
except for interrupt moderation which was disabled when NAPI was used.

From the packet reception and transmission rates measured when forwarding was
disabled, it is possible to extrapolate that, very likely, in a bidirectional two-port sce-
nario, a router will not be able to forward more than 650 000packets/s each way, be-
cause of the NIC’s transmission rate limit.

4.2 Two-Port Configuration

We first considered the simplest unidirectional case, where packets are generated from
the tester, received by the router from one NIC, and sent back to the tester through the
other NIC.

In Fig. 4 we plot the forwarding rate achieved for minimum-size Ethernet frames by
IRQ, IRQ moderated, and NAPI activated stacks under unidirectional traffic, as a func-
tion of the offered load. Both IRQ and IRQ moderated stacks suffer from receive live-
lock: when the offered load becomes greater than 230 000packets/s, or 500 000pack-
ets/s, respectively, the throughput quickly drops to zero. Only NAPI is able to sustain a
constant forwarding rate of 510 000packets/s (corresponding to 340 Mbit/s) under high
load. A more accurate analysis of the latter case shows that all packet drops occur on the
reception ring rather than from the RX queue. Such forwarding rate is more than rea-
sonable, because a back-of-the-envelope calculation indicates that the per-packet over-
head is around 2 µs or about 5500 clock cycles. On the other hand, a 2.8 GHz CPU
for forwarding 1 488 095packets/s would have to take less than 2000 clock cycles (cor-
responding to approximatively 700 ns) per packet. Given the superior performance of
NAPI with respect to other packet forwarding schemes, in the remainder of the paper,
we will consider only results obtained with NAPI.

It is now interesting to repeat the last test for different Ethernet payload sizes to
assess whether the forwarding rate limitation observed in Fig. 4 depends on the per-
packet processing overhead or on a more unlikely PCI bandwidth bottleneck.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06
 0

 100

 200

 300

 400

 500

Fo
rw

ar
di

ng
 R

at
e

[p
ac

ke
ts

/s
]

Fo
rw

ar
di

ng
 R

at
e

[M
bi

t/s
]

Offered load [packets/s]

NAPI
IRQ Moderation

IRQ

Fig. 4. Comparison of the router forwarding
rate under unidirectional traffic for an IRQ, an
IRQ moderated and a NAPI stack.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 200 400 600 800 1000 1200 1400
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Fo
rw

ar
di

ng
 R

at
e

[p
ac

ke
ts

/s
]

Fo
rw

ar
di

ng
 R

at
e

[G
bi

t/s
]

Ethernet Payload Size [byte]

Theoretical Limit [packets/s]
Measured Throughput [packets/s]

Theoretical Limit [Gbit/s]
Measured Throughput [Gbit/s]

Fig. 5. Comparison of the router saturation for-
warding rate for a NAPI stack under unidirec-
tional traffic and different IP packet sizes.

10

In Fig. 5, we report in both packets/s and Mbit/s the forwarding rate we measured
(empty markers) and the value the forwarding rate would have taken in absence of
packet drops (filled markers) versus the Ethernet payload size, under NAPI. For 64- and
128-byte payloads the forwarding rate is most likely limited to about 500 000packets/s
by the per-packet CPU processing overhead. Conversely, for payloads of 512 byte or
more, it is possible to reach 1 Gbit/s, because the corresponding packet rate is low
enough and the PCI bus is not a bottleneck. The result for 256-byte frames is difficult
to explain and may be related to some PCI-X performance impairment. Indeed, in [18],
the authors, using a PCI protocol analyzer, show that the bus efficiency for bursts of 256
byte or less is pretty low.

Since the PCI bus seems not to be a bottleneck for minimum-size packet transfers,
in Fig. 6 we compare the aggregated forwarding rate of unidirectional and bidirectional
flows plotted versus the aggregated offered load. Notice that, for bidirectional traffic, the
forwarding rate improves from 510 000packets/s to 620 000packets/s, corresponding to
approximatively 400 Mbit/s. This happens because, at high offered load under bidirec-
tional traffic, the NAPI poll function, when invoked, services both the reception and
the transmission ring of each NIC it processes, greatly reducing the number of IRQs
generated with respect to the unidirectional case, where only one NIC receives pack-
ets in polling mode and the other one sends them in IRQ mode. Indeed, measurements
performed when the aggregated offered load is around 1 000 000packets/s show that
the transmitting NIC generates, under unidirectional traffic, 27 times as many interrupts
than in the bidirectional case.

The curves in Fig. 7 show that the buffer recycling optimization improves the for-
warding rate of a bidirectional flow of 64-byte Ethernet frames to 730 000packets/s,
roughly corresponding to 500 Mbit/s. Measurements on the router reveal that, after an
initial transient phase when all buffers are allocated from the general-purpose memory
allocator, in stationary conditions all buffers are allocated from the recycling list, which
contains around 600 buffers, occupying approximatively 1.2 Mbyte of RAM.

All tests in the following section were performed on a Linux 2.4.21 kernel and,
therefore, could not take advantage of the buffering recycling patch.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06
 0

 100

 200

 300

 400

 500

Fo
rw

ar
di

ng
 R

at
e

[p
ac

ke
ts

/s
]

Fo
rw

ar
di

ng
 R

at
e

[M
bi

t/s
]

Offered load [packets/s]

NAPI Unidirectional
NAPI Bidirectional

Fig. 6. Comparison of the router forwarding
rate achieved by unidirectional and bidirec-
tional traffic flows for a NAPI stack.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06
 0

 100

 200

 300

 400

 500

Fo
rw

ar
di

ng
 R

at
e

[p
ac

ke
ts

/s
]

Fo
rw

ar
di

ng
 R

at
e

[M
bi

t/s
]

Offered load [packets/s]

NAPI + BR
NAPI

Fig. 7. Comparison of the effect of the buffer
recycling (BR) patch on the forwarding rate
under bidirectional traffic for a NAPI stack.

11

4.3 Multi-port Configurations

In this section we consider both a one-to-one traffic scenario, where all packets arriving
at one input port are addressed to a different output port, so that no output port gets
packets from more than one input port, as well as a uniform traffic pattern where packets
received by one NIC are spread over all the remaining ports uniformly.

We first consider a router with two ports running at 1 Gbit/s and two ports running
at 100 Mbit/s, under one-to-one unidirectional traffic. The offered load is distributed
according to a 10:1 ratio between the ports running at 1 Gbit/s and the ports running
at 100 Mbit/s,and varied from 0 to 100% of the full line rate. The quota Q and the
budget B are set to their default values of 64 and 300. Figure 8 shows the total and per-
flow forwarding rate versus the aggregated load offered to the router. The forwarding
rate for the 100 Mbit/s flow increases steadily, stealing resources from the 1 Gbit/s flow
according to a max-min fair policy, when the router bandwidth is saturated, and the
aggregated forwarding rate keeps constant.

This behavior can be easily altered to implement other fairness models just changing
the quota assigned to each port. Figure 9 shows the results obtained in the same scenario
when the quota Q was set to 270 for ports running at 1 Gbit/s and to 27 for ports running
at 100 Mbit/s. In this way, poll can extract from the former 10 times as many packets
than from the latter and, assigning more resources to more loaded ports, aggregated
performance is improved.

In Fig. 10 we plot the aggregated forwarding rate versus the aggregated offered load
for 6, 10 and 14 ports running at 100 Mbit/s under bidirectional one-to-one traffic. There
is a slight decrease in the saturation forwarding rate as the number of ports receiving
traffic increases, which may be due to the greater overhead incurred by the NAPI poll
handler when switching among different ports.

In Fig. 11 we compare the forwarding rate for the one-to-one and the uniform traffic
pattern when 14 ports are running at 100 Mbit/s. Again, we observe a small difference
in the forwarding rate achieved in the two scenarios, which is probably due to a major
processing overhead incurred by the latter.

This may depend on the fact that, under uniform traffic, packets consecutively ex-
tracted from the reception ring of one port are headed for different IP subnetworks and

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 300000 600000 900000 1.2e+06 1.5e+06
 0

 100

 200

 300

 400

 500

Fo
rw

ar
di

ng
 R

at
e

[p
ac

ke
ts

/s
]

Fo
rw

ar
di

ng
 R

at
e

[M
bi

t/s
]

Offered load [packets/s]

100 Mbit/s + 1 Gbit/s Flows
1 Gbit/s Flow

100 Mbit/s Flow

Fig. 8. Max-min fair behavior of two unidirec-
tional traffic flows coming from ports running
at different speed under NAPI.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 300000 600000 900000 1.2e+06 1.5e+06
 0

 100

 200

 300

 400

 500

Fo
rw

ar
di

ng
 R

at
e

[p
ac

ke
ts

/s
]

Fo
rw

ar
di

ng
 R

at
e

[M
bi

t/s
]

Offered load [packets/s]

100 Mbit/s + 1 Gbit/s Flows
1 Gbit/s Flow

100 Mbit/s Flow

Fig. 9. Impact of different per-port quota set-
ting on the fair share of two unidirectional traf-
fic flows.

12

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 200000 400000 600000 800000
 0

 100

 200

 300

 400

 500

Fo
rw

ar
di

ng
 R

at
e

[p
ac

ke
ts

/s
]

Fo
rw

ar
di

ng
 B

an
dw

id
th

 [
M

bi
t/s

]

Offered load [packets/s]

6 ports
10 ports
14 ports

Fig. 10. Forwarding performance for one-to-
one bidirectional traffic versus number of
100 Mbit/s ports.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06
 0

 100

 200

 300

 400

 500

Fo
rw

ar
di

ng
 R

at
e

[p
ac

ke
ts

/s
]

Fo
rw

ar
di

ng
 B

an
dw

id
th

 [
M

bi
t/s

]

Offered load [packets/s]

One-to-one Traffic
Uniform Traffic

Fig. 11. Forwarding performance comparison
between one-to-one and uniform bidirectional
traffic with 14 100 Mbit/s ports.

must be spread among different TX queues, contrarily to what happens under one-to-
one traffic, where all packets are forwarded to the same TX queue.

5 Conclusions and Future Work

In this paper we evaluated the viability of building a high-performance IP router out of
common PC hardware and the Linux open-source operating system. We ran a number of
experiments to assess the saturation forwarding rate in different scenarios, completely
ignoring all issues related to the control plane.

We showed that a software router based on a high-end off-the-shelf PC is able to
forward up to 600 000packets/s, when considering minimum-size Ethernet frames, and
to reach 1 Gbit/s when larger frame sizes are considered. Configurations with up to
14 ports can be easily and inexpensively built at the price of a small decrease in the
forwarding rate. A number of tricks, such as packet buffer recycling, and NAPI quota
tuning are also available to improve the throughput and alter the fairness among differ-
ent traffic flows.

In the future we plan to compare the routing performance of Click and FreeBSD
with that of Linux. Provided that the major bottleneck in the systems seems to be the
per-packet processing overhead introduced by the CPU, we are also profiling the Linux
kernel networking code so as to identify the most CPU intensive operations and imple-
ment them on custom NICs enhanced with field programmable gate arrays (FPGAs).

Acknowledgment

We would like to thank M.L.N.P.P. Prashant for running the tests on different packet
sizes and the experiments for router configurations with more than 6 ports, and Robert
Birke for modifying udpcount to run on top of NAPI and providing the results on the
NIC reception rates. We would also like to thank the partners of the Euro project for the
useful discussions, and the anonymous reviewers for helping to improve the paper.

13

References

1. Torvalds, L.: Linux. (URL: http://www.linux.org)
2. Kohler, E., Morris, R., Chen, B., Jannotti, J.: The click modular router. ACM Transactions

on Computer Systems 18 (2000) 263–297
3. FreeBSD. (URL: http://www.freebsd.org)
4. Handley, M., Hodson, O., Kohler, E.: Xorp: An open platform for network research. In:

Proceedings of the 1st Workshop on Hot Topics in Networks, Princeton, NJ, USA (2002)
5. GNU: Zebra. (URL: http://www.zebra.org)
6. Olsson, R.: skb recycling patch. (URL: ftp://robur.slu.se/pub/Linux/

net-development/skb recycling)
7. Baker, F.: RFC 1812, requirements for IP version 4 routers.

URL: ftp://ftp.rfc-editor.org/in-notes/rfc1812.txt (June 1995)
8. Mogul, J.C., Ramakrishnan, K.K.: Eliminating receive livelock in an interrupt-driven kernel.

ACM Transactions on Computer Systems 15 (1997) 217–252
9. Intel: Interrupt moderation using Intel Gigabit Ethernet controllers (Application Note 450).

URL: http://www.intel.com/design/network/applnots/ap450.htm
10. Salim, J.H., Olsson, R., Kuznetsov, A.: Beyond softnet. In: Proceedings of the 5th Annual

Linux Showcase & Conference (ALS 2001), Oakland, CA, USA (2001)
11. Bradner, S., McQuaid, J.: RFC 2544, benchmarking methodology for network interconnect

devices. URL: ftp://ftp.rfc-editor.org/in-notes/rfc2544.txt (March
1999)

12. Zander, S.: Traffic generator overview.
(URL: http://www.fokus.gmd.de/research/cc/glone/employees/
sebastian.zander/private/trafficgen.html)

13. Laine, J.: Rude/Crude. (URL: http://www.atm.tut.fi/rude)
14. Zander, S.: UDPgen.

(URL: http://www.fokus.fhg.de/usr/sebastian.zander/private/
udpgen)

15. Olsson, R.: Linux kernel packet generator for performance evaluation.
(URL: /usr/src/linux-2.4/net/core/pktgen.c)

16. Intel: Intel PRO/10/100/1000/10GbE linux driver.
(URL: http://sourceforge.net/projects/e1000)

17. Agilent: N2X routertester 900.
(URL: http://advanced.comms.agilent.com/n2x)

18. Brink, P., Castelino, M., Meng, D., Rawal, C., Tadepalli, H.: Network processing perfor-
mance metrics for IA- and IXP-based systems. Intel Technology Journal 7 (2003)

14

