Skip to main content

Applying Conditional Random Fields to Chinese Shallow Parsing

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3406))

  • 2403 Accesses

Abstract

Chinese shallow parsing is a difficult, important and widely-studied sequence modeling problem. CRFs are new discriminative sequential models which may incorporate many rich features. This paper shows how conditional random fields (CRFs) can be efficiently applied to Chinese shallow parsing. We employ using CRFs and HMMs on a same data set. Our results confirm that CRFs improve the performance upon HMMs. Our approach yields the F1 score of 90.38% in Chinese shallow parsing with the UPenn Chinese Treebank. CRFs have shown to perform well for Chinese shallow parsing due to their ability to capture arbitrary, overlapping features of the input in a Markov model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, S., Liu, Q., Yang, Z.: Chunk Parsing with Maximym Entropy Principle. Chinese Journal of Computers 26(12), 1734–1738 (2003)

    MathSciNet  Google Scholar 

  2. Zhang, Y., Zhou, Q.: Automatic identification of Chinese base phrases. Journal of Chinese Information Processing 16(16) (2002)

    Google Scholar 

  3. Zhou, Q., Sun, M., Huang, C.: Chunking parsing scheme for Chinese sentences. Chinese J. Computers 22(1), 1158–1165 (1999)

    Google Scholar 

  4. Zhao, J., Huang, C.: A transformation-based model for Chinese basenp recognition. Journal of Chinese Information Processing 13(2), 1–7 (1998)

    Google Scholar 

  5. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proc. 18th International Conf. on Machine Learning (2001)

    Google Scholar 

  6. Sha, F., Pereira, F.: Shallow Parsing with Conditional Random Fields. In: Proceedings of Human Language Technology-NAACL, Edmonton, Canada (2003)

    Google Scholar 

  7. McCallum, A., Feng, F.-f.: Chinese Word Segmentation with Conditional Random Fields and Integrated Domain Knowledge (2003)

    Google Scholar 

  8. McCallum, A., Li, W.: Early results for named entity recognition with conditional random fields, Feature Induction and Web-Enhanced Lexicons. In: Proceedings of Seventh Conference on Natural Language Learning, CoNLL (2003)

    Google Scholar 

  9. Pinto, D., McCallum, A., Wei, X., Croft, W.B.: Table extraction using conditional random fields. In: Proc. of SIGIR, pp. 235–242 (2003)

    Google Scholar 

  10. Peng, F., McCallum, A.: Accurate information extraction from research papers. In: Proc. of HLT/NAACL (2004)

    Google Scholar 

  11. Ramashaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning. In: Proceedings of the Third ACL Workshop on Very Large Corpora

    Google Scholar 

  12. Abney, S.: Parsing by chunks. In: Berwick, R.C., Abney, S.P., Tenny, C. (eds.) Principle-Based Parsing: Computation and Psycholinguistics, pp. 257–278. Kluwer Academic Publishers, Boston (1991)

    Google Scholar 

  13. Paz, A.: Introduction to probabilistic automata. Academic Press, London (1971)

    MATH  Google Scholar 

  14. Bottou, L.: Une approche theorique del’apprentissage connexionniste: Applications a la reconnaissance de la parole, Doctoral dissertation, Universite de Paris XI (1991)

    Google Scholar 

  15. Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In: Proc. EMNLP. Association for Computational Linguistics, New Brunswick (1996)

    Google Scholar 

  16. Punyakanok, V.: The use of classifiers in sequential inference. NIPS 13 (2001)

    Google Scholar 

  17. Wallach, H.: Efficient Training of Conditional Random Fields, Thesis. Master of Science School of Cognitive Science, Division of Informatics. University of Edinburgh (2002)

    Google Scholar 

  18. McCallum, A., Freitag, D., Pereira, F.: Maximum entropy Markov models for information extraction and segmentation. In: Proc. ICML 2000, Stanford, California, pp. 591–598 (2000)

    Google Scholar 

  19. McCallum, A.K.: MALLET: A Machine Learning for Language Toolkit. (2002), http://mallet.cs.umass.edu

  20. Yao, T., et al.: Natural Language Processing – A research of making computers understand human languages. Tsinghua University Press, Beijing (2002) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, Y., Yao, T., Chen, Q., Zhu, J. (2005). Applying Conditional Random Fields to Chinese Shallow Parsing. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2005. Lecture Notes in Computer Science, vol 3406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30586-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30586-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24523-0

  • Online ISBN: 978-3-540-30586-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics