Skip to main content

Resolution of Data Sparseness in Named Entity Recognition Using Hierarchical Features and Feature Relaxation Principle

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3406))

  • 2311 Accesses

Abstract

This paper introduces a Mutual Information Independence Model (MIIM) and proposes a feature relaxation principle to resolve the data sparseness problem in MIIM-based named entity recognition via hierarchical features. In this way, a named entity recognition system with better performance and better portability can be achieved. Evaluation of our system on MUC-6 and MUC-7 English named entity tasks achieves F-measures of 96.1% and 93.7% respectively. It also shows that 20K words of training data would have given the performance of 90 percent with the hierarchical structure in the features compared with 30K words without the hierarchical structure in the features. This suggests that the hierarchical features provide a potential for much better portability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chinchor, N.: MUC-6 Named Entity Task Definition (Version 2.1). In: Proceedings of the Sixth Message Understanding Conference (MUC-6), Columbia, Maryland (1995a)

    Google Scholar 

  2. Chinchor, N.: MUC-7 Named Entity Task Definition (Version 3.5). In: Proceedings of the Seventh Message Understanding Conference (MUC-7), Fairfax, Virginia (1998a)

    Google Scholar 

  3. Aone, C., Halverson, L., Hampton, T., Ramos-Santacruz, M.: SRA: Description of the IE2 System Used for MUC-7. In: Proceedings of the Seventh Message Understanding Conference (MUC-7), Fairfax, Virginia (1998)

    Google Scholar 

  4. Krupka, G.R., Hausman, K.: IsoQuest Inc.: Description of the NetOwlTM Extractor System as Used for MUC-7. In: Proceedings of the Seventh Message Understanding Conference (MUC-7), Fairfax, Virginia (1998)

    Google Scholar 

  5. Mikheev, A., Grover, C., Moens, M.: Description of the LTG System Used for MUC-7. In: Proceedings of the Seventh Message Understanding Conference (MUC-7), Fairfax, Virginia (1998)

    Google Scholar 

  6. Mikheev, A., Moens, M., Grover, C.: Named entity recognition without gazeteers. In: Proceedings of the Ninth Conference the European Chapter of the Association for Computational Linguistics (EACL 1999), Bergen, Norway, pp. 1–8 (1999)

    Google Scholar 

  7. Miller, S., Crystal, M., Fox, H., Ramshaw, L., Schwartz, R., Stone, R., Weischedel, R., The Annotation Group: BBN: Description of the SIFT System as Used for MUC-7. In: Proceedings of the Seventh Message Understanding Conference (MUC-7), Fairfax, Virginia (1998)

    Google Scholar 

  8. Bikel, D.M., Schwartz, R., Weischedel, R.M.: An Algorithm that Learns What’s in a Name. In: Machine Learning (Special Issue on NLP) (1999)

    Google Scholar 

  9. GuoDong, Z., Jain, S.: Named Entity Recognition Using a HMM-based Chunk Tagger. In: Proceedings of the fortieth Annual Meeting of the Association for Computational Linguistics (ACL 2002), Philadelphia (2002)

    Google Scholar 

  10. Borthwick, A., Sterling, J., Agichtein, E., Grishman, R.: NYU: Description of the MENE Named Entity System as Used in MUC-7. In: Proceedings of the Seventh Message Understanding Conference (MUC-7). Fairfax, Virginia. (1998)

    Google Scholar 

  11. Borthwick, A.: A Maximum Entropy Approach to Named Entity Recognition. Ph.D. Thesis. New York University (1999)

    Google Scholar 

  12. Leong, C.H., Tou, N.H.: Named Entity Recognition: A Maximum Entropy Approach Using Global Information. In: Proceedings of the 19th International Conference on Computational Linguistics (COLING 2002), Taipei, pp. 190–196 (2002)

    Google Scholar 

  13. Bennett, S.W., Aone, C., Lovell, C.: Learning to Tag Multilingual Texts Through Observation. In: Proceedings of the First Conference on Empirical Methods on Natural Language Processing (EMNLP 1996), Providence, Rhode Island (1996)

    Google Scholar 

  14. Zhang, T., Johnson, D.: A Robust Risk Minimization based Named  Entity Recognition System. In: Proceedings of CoNLL 2003, Edmonton,  Canada, pp. 204–207 (2003)

    Google Scholar 

  15. Klein, D., Smarr, J., Nguyen, H., Manning, C.D.: Named Entity Recognition with Character-Level Models. In: Proceedings of  CoNLL 2003, Edmonton, Canada, pp. 180–183 (2003)

    Google Scholar 

  16. McCallum, A., Li, W.: Early results for Named Entity  Recognition with Conditional Random Fields, Feature Induction and  Web-Enhanced Lexicons. In: Proceedings of CoNLL 2003, Edmonton,  Canada, pp. 188–191 (2003)

    Google Scholar 

  17. Viterbi, A.J.: Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. IEEE Transactions on Information Theory IT(13), 260–269 (1967)

    Article  Google Scholar 

  18. McCallum, A., Freitag, D., Pereira, F.: Maximum entropy Markov models for information extraction and segmentation. In: ICML-19, Stanford, California, pp. 591–598 (2000)

    Google Scholar 

  19. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML-20 (2001)

    Google Scholar 

  20. Chen, Goodman: An Empirical Study of Smoothing Technniques for Language Modeling. In: Proceedings of the 34th Annual Meeting of the Association of Computational Linguistics (ACL 1996), Santa Cruz, California, USA, pp. 310–318 (1996)

    Google Scholar 

  21. Jelinek, F.: Self-Organized Language Modeling for Speech Recognition. In: Waibel, A., Lee, K.-F. (eds.) Readings in Speech Recognition, pp. 450–506. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  22. Katz, S.M.: Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer. IEEE Transactions on Acoustics, Speech and Signal Processing 35, 400–401 (1987)

    Article  Google Scholar 

  23. Collins, M., Brooks, J.: Prepositional Phrase Attachment through a Backed-Off Model. In: Proceedings of the Third Workshop on Very Large Corpora (1995)

    Google Scholar 

  24. Roth, D., Zelenko, D.: Part of Speech Tagging Using a Network of Linear Separators. In: COLING-ACL 1998, Montreal, Canada, pp. 1136–1142 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, G., Su, J., Yang, L. (2005). Resolution of Data Sparseness in Named Entity Recognition Using Hierarchical Features and Feature Relaxation Principle. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2005. Lecture Notes in Computer Science, vol 3406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30586-6_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30586-6_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24523-0

  • Online ISBN: 978-3-540-30586-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics