Skip to main content

Relevant Logic and Paraconsistency

  • Chapter
Inconsistency Tolerance

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3300))

  • 660 Accesses

Abstract

This is an account of the approach to paraconsistency associated with relevant logic. The logic fde of first degree entailments is shown to arise naturally out of the deeper concerns of relevant logic. The relationship between relevant logic and resolution, and especially the disjunctive syllogism, is then examined. The relevant refusal to validate these inferences is defended, and finally it is suggested that more needs to be done towards a satisfactory theory of when they may nonetheless safely be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akama, S.: Tableaux for Logic Programming with Strong Negation. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 31–42. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Anderson, A.R., Belnap, N.D.: Entailment: The Logic of Relevance and Necessity, vol. 1. Princeton University Press, Princeton (1975)

    MATH  Google Scholar 

  3. Anderson, A.R., Belnap, N.D., Dunn, J.M.: Entailment: The Logic of Relevance and Necessity, vol. 2. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  4. Belnap, N.D.: A Useful Four-Valued Logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logics, pp. 8–37. Reidel, Dordrecht (1977)

    Google Scholar 

  5. Belnap, N.D.: Display Logic. Journal of Philosophical Logic 11, 375–417 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Brady, R.: Universal Logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Dunn, J.M.: Algebraic Completeness Results for R-mingle and its Extensions. Journal of Symbolic Logic 35, 1–13 (1970); Reprinted in [2]

    Article  MathSciNet  MATH  Google Scholar 

  8. Dunn, J.M.: A ‘Gentzen’ System for Positive Relevant Implication. Journal of Symbolic Logic 38, 356–357 (1974) (abstract); Reprinted in [2]

    Google Scholar 

  9. Dunn, J.M.: Relevance Logic and Entailment. In: Gabbay, D., Günthner, F. (eds.) Handbook of Philosophical Logic, vol. 3, pp. 117–229. Reidel, Dordrecht (1986)

    Chapter  Google Scholar 

  10. Eiter, T., Leone, N., Pearce, D.: Assumption Sets for Extended Logic Programs. In: JFAK. Essays dedicated to Johan van Benthem on the occasion of his 50th birthday. Amsterdam University Press (1999), http://www.illc.uva.nl/j50/contribs/pearce/

  11. Gelfond, M.: Representing Knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 413–451. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Giambrone, S., Urquhart, A.: Proof theories for Semilattice Relevant Logics. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 33, 301–304 (1987)

    Google Scholar 

  13. Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50, 1–101 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hasuo, I., Kashima, R.: A Proof-Theoretical Study on Logics with Constructible Falsity. Report C-165, research Reports on Mathematical and Computing Sciences, Tokyo Institute of Technology (2003), http://www.is.titech.ac.jp/research/research-report/C/

  15. Łukasiewicz, J.: Selected Works. In: Borkowski, L. (ed.) North-Holland, Amsterdam (1970)

    Google Scholar 

  16. Meyer, R.K., Friedman, H.: Whither Relevant Arithmetic? Journal of Symbolic Logic 57, 824–831 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meyer, R.K., Martin, E.P.: Logic on the Australian Plan. Journal of Philosophical Logic 15, 305–332 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meyer, R.K., Routley, R.: Classical Relevant Logics, I and II. Studia Logica 32, 51–66, 33, 183–194 (1973)

    Google Scholar 

  19. Nelson, D.: Constructible Falsity. Journal of Symbolic Logic 14, 16–26 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pym, D.: The Semantics and Proof Theory of the Logic of Bunched Implications. Kluwer, Dordrecht (2002)

    Book  MATH  Google Scholar 

  21. Relevant and Substructural Logics. In: Gabbay, D., Woods, J. (eds.) Handbook of the History and Philosophy of Logic (forthcoming)

    Google Scholar 

  22. Routley, R., Meyer, R.: Semantics of Entailment. In: Leblanc, H. (ed.) Truth, Syntax, Modality, pp. 194–243. North Holland, Amsterdam (1973)

    Google Scholar 

  23. Routley, R., Plumwood, V., Meyer, R., Brady, R.: Relevant Logics and their Rivals. Ridgeview, Atascadero CA (1982)

    Google Scholar 

  24. Slaney, J.: Reduced Models for Relevant Logics Without WI. Notre Dame Journal of Formal Logic 28, 395–407 (1987)

    Article  MathSciNet  Google Scholar 

  25. Slaney, J.: A General Logic. Australasian Journal of Philosophy 68, 74–88 (1990)

    Article  Google Scholar 

  26. Slaney, J., Meyer, R.: Logic for Two: The Semantics of Distributive Substructural Logics. In: Nonnengart, A., Kruse, R., Ohlbach, H.J., Gabbay, D.M. (eds.) FAPR 1997 and ECSQARU 1997. LNCS, vol. 1244, pp. 554–567. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  27. Slaney, J.: The Implications of Paraconsistency. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, pp. 1052–1057 (1991)

    Google Scholar 

  28. Urquhart, A.: The Undecidability of Entailment and Relevant Implication. Journal of Symbolic Logic 49, 1059–1073 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. The Complexity of Decision Procedures in Relevance Logic. In: Dunn, J.M., Gupta, A. (eds.) Truth or Consequences: Essays in Honour of Nuel Belnap, pp. 77–95. Kluwer, Dordrecht (1990)

    Google Scholar 

  30. Wansing, H.: The Logic of Information Structures. LNCS (LNAI), vol. 681. Springer, Heidelberg (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slaney, J. (2005). Relevant Logic and Paraconsistency. In: Bertossi, L., Hunter, A., Schaub, T. (eds) Inconsistency Tolerance. Lecture Notes in Computer Science, vol 3300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30597-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30597-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24260-4

  • Online ISBN: 978-3-540-30597-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics