Abstract
The paper concerns the use of multiple viewpoint representation schemes for prediction with statistical models of monophonic music. We present an experimental comparison of the performance of two techniques for combining predictions within the multiple viewpoint framework. The results demonstrate that a new technique based on a weighted geometric mean outperforms existing techniques. This finding is discussed in terms of previous research in machine learning.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ames, C.: The Markov process as a compositional model: a survey and tutorial. Leonardo 22, 175–187 (1989)
Assayag, G., Dubnov, S., Delerue, O.: Guessing the composer’s mind: applying universal prediction to musical style. In: Proceedings of the 1999 International Computer Music Conference. pp. 496–499, San Francisco: ICMA (1999)
Hall, M., Smith, L.: A computer model of blues music and its evaluation. Journal of the Acoustical Society of America 100, 1163–1167 (1996)
Lartillot, O., Dubnov, S., Assayag, G., Bejerano, G.: Automatic modelling of musical style. In: Proceedings of the 2001 International Computer Music Conference. pp. 447–454, San Francisco: ICMA (2001)
Rowe, R.J.: Machine composing and listening with Cypher. Computer Music Journal 16, 43–63 (1992)
Pickens, J., Bello, J.P., Monti, G., Sandler, M.B., Crawford, T., Dovey, M., Byrd, D.: Polyphonic score retrieval using polyphonic audio queries: A harmonic modeling approach. Journal of New Music Research 32, 223–236 (2003)
Dubnov, S., Assayag, G., El-Yaniv, R.: Universal classification applied to musical sequences. In: Proceedings of the 1998 International Computer Music Conference. pp. 332–340, San Francisco: ICMA (1998)
Ponsford, D., Wiggins, G.A., Mellish, C.: Statistical learning of harmonic movement. Journal of New Music Research 28, 150–177 (1999)
Westhead, M.D., Smaill, A.: Automatic characterisation of musical style. In: Smith, M., Smaill, A., Wiggins, G. (eds.) Music Education: an Artificial Intelligence Approach, pp. 157–170. Springer, Brelin (1993)
Ferrand, M., Nelson, P., Wiggins, G.: A probabilistic model for melody segmentation. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS (LNAI), vol. 2445. Springer, Heidelberg (2002)
Eerola, T.: The Dynamics of Musical Expectancy: Cross-cultural and Statistical Approaches to Melodic Expectations. PhD thesis, Faculty of Humanities, University of Jyväskylä,, Finland. Jyväskylä Studies in Humanities, 9 (2004)
Ebcioglu, K.: An expert system for harmonising four–part chorales. Computer Music Journal 12, 43–51 (1988)
Conklin, D., Witten, I.H.: Multiple viewpoint systems for music prediction. Journal of New Music Research 24, 51–73 (1995)
Conklin, D.: Prediction and entropy of music. Master’s thesis, Department of Computer Science, University of Calgary (1990), Available as Technical Report 1990–390–14
Dietterich, T.G.: Ensemble methods in machine learning. In: First International Workshop on Multiple Classifier Systems, LNCS, pp. 1–15. Springer, New York (2000)
Conklin, D.: Representation and discovery of vertical patterns in music. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) Proceedings of the Second International Conference of Music and Artificial Intelligence, pp. 32–42 (2002)
Jackendoff, R.: Consciousness and the Computational Mind. MIT Press, Cambridge (1987)
Lewin, D.: Generalised Musical Intervals and Transformations. Yale University Press, New Haven (1987)
Conklin, D., Anagnostopoulou, C.: Representation and discovery of multiple viewpoint patterns. In: Proceedings of the 2001 International Computer Music Conference, ICMA, San Francisco (2001)
Pearce, M.T., Wiggins, G.A.: Improved methods for statistical modelling of monophonic music. To appear in Journal of New Music Research (2004)
Brown, P.F., Della Pietra, S.A., Della Pietra, V.J., Lai, J.C., Mercer, R.L.: An estimate of an upper bound on the entropy of English. Computational Linguistics 18, 32–40 (1992)
Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)
Genest, C., Zidek, J.V.: Combining probability distributions: a critique and an annotated bibliography. Statistical Science 1, 114–148 (1986)
Tax, D.M.J., van Breukelen, M., Duin, R.P.W., Kittler, J.: Combining multiple classifiers by averaging or by multiplying? Pattern Recognition 33, 1475–1485 (2000)
Hinton, G.: Products of experts. In: Proceedings of the Ninth International Conference on Artificial Neural Networks, vol. 1, pp. 1–6 (1999)
Hinton, G.: Training products of experts by minimizing contrastive divergence. Technical Report GCNU TR 2000-004, Gatsby Computational Neuroscience Unit, UCL (2000)
Huron, D.: Humdrum and Kern: selective feature encoding. In: Selfridge-Field, E. (ed.) Beyond MIDI: The Handbook of Musical Codes, pp. 375–401. MIT Press, Cambridge (1997)
Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)
Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10, 1895–1924 (1998)
Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and thier applications to handwriting recognition. IEEE Transactions on Systems, Man and Cybernetics 22, 418–435 (1992)
Chen, K., Wang, L., Chi, H.: Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification. International Journal of Pattern Recognition and Artificial Intelligence 11, 415–417 (1997)
Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pearce, M., Conklin, D., Wiggins, G. (2005). Methods for Combining Statistical Models of Music. In: Wiil, U.K. (eds) Computer Music Modeling and Retrieval. CMMR 2004. Lecture Notes in Computer Science, vol 3310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31807-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-31807-1_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24458-5
Online ISBN: 978-3-540-31807-1
eBook Packages: Computer ScienceComputer Science (R0)