
Evolutionary Optimization of Music
Performance Annotation
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Abstract. In this paper we present an enhancement of edit distance
based music performance annotation. The annotation captures musical
expressivity not only in terms of timing deviations but also represents
e.g. spontaneous note ornamentation. To reduce the number of errors in
automatic performance annotation, some optimization is essential. We
have taken an evolutionary approach to optimize the parameter values
of cost functions of the edit distance. Automatic optimization is desir-
able since manual parameter tuning is unfeasible when more than a few
performances are taken into account. The validity of the optimized pa-
rameter settings is shown by assessing their error-percentage on a test
set.

1 Introduction

Although the use of the edit distance [7] is well known in the field of melodic
similarity [8, 12], score following/automatic accompaniment [3, 10] and perfor-
mance transcription [6, 9], not much attention has been paid to its value for
the expressive analysis and annotation of musical performances. The optimal
alignment between score and performance does not only reveal timing devia-
tions of performed notes, but (depending on the set of edit operations) conveys
a much richer set of expressive variations, such as ornamentations, and frag-
mentations/consolidations. In the context of the ProMusic project1 we are de-
veloping Tempo Express, a Case Based Reasoning system for applying tempo
transformations to audio recordings of solo performances of jazz melodies [5]. In
this system, we use the alignment information to automatically annotate perfor-
mances [1]. The performance annotations serve as example cases to transform
a performance for a given melody. As a result, the expressiveness of the trans-
formed performance is not restricted to timing variations, but it can also contain
for example ornamentations.

For a correct detection of phenomena such as ornamentations, fragmenta-
tions, and consolidations of notes using the edit distance, it is important to
1 MCyT. TIC2003-07776-C2-02
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assign appropriate costs to each of the edit operations. Since it turned out to be
unfeasible to manually tune the costs to obtain correct annotations for a large
set of performances, we tried to find good costs using a genetic algorithm. In
this paper, we describe our experiments and results.

In section 2, we explain how the edit distance can be used to annotate perfor-
mances, and motivate the chosen set of edit operations, and the costs assigned to
them. In section 3, we report how the parameter values in the cost functions were
estimated, using a genetic algorithm, and evaluate the quality of the estimations.
Conclusions are presented in section 4.

2 Performance Annotation

It has been widely acknowledged that human performances of musical material
are virtually always quite different from mechanical renderings of the music.
These differences (the musical expressivity) are thought to be vital for the aes-
thetic quality of the performance, and therefore it is worthwhile to have ways
of making explicit the quality and quantity of these differences. The majority of
research concerning musical expressivity is focused on the temporal, or dynamic
variations of the notes of the musical score as they are performed [2, 4, 11, 13]. In
this context, the spontaneous insertions or deletions of notes by the performer
are often discarded as artifacts, or performance errors. This may be due to the
fact that most of this research is focused on the performance practice of classical
music, where the interpretation of notated music is rather strict. Contrastingly,
in jazz music performers often favor a more liberal interpretation of the score, so
that expressive variation is not limited to variations in timing of score notes, but
also comes in the form of e.g. deliberately inserted and deleted notes. Thus, re-
search concerning expressivity in jazz music should pay heed to these phenomena
and in addition to capturing the temporal/dynamical variations of score notes,
the musical behavior of the performer should be described in terms of note in-
sertions/deletion/ornamentations etcetera. One way to do this is to annotate
performances in the form of a score-performance alignment (calculated using
the edit distance), i.e. a sequence of edit operations representing the behavior
of the performer, as proposed in Arcos et. al. [1]. In the next subsections, after
briefly explaining the computation of the edit distance, we describe a suitable
set of edit operations for annotating a set of (monophonic) performances of jazz
phrases, and propose cost functions for each of the operations.

2.1 Computing the Edit Distance

The edit distance between a source and a target sequence is defined as the min-
imum cost of transforming the source sequence into the target sequence using
a fixed set of edit operations. This cost can be calculated using the follow-
ing recurrence equation, that defines the distance dm,n between two sequences
〈a1, a2, ..., am〉 and 〈b1, b2, ..., bn〉 (using insertion, deletion and replacement, the
standard set of edit operations):
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di,j = min

di−1,j + w(ai, ∅) (deletion)

di,j−1 + w(∅, bj) (insertion)

di−1,j−1 + w(ai, bj) (replacement)

for all 0 ≤ i ≤ m and 0 ≤ j ≤ n, where m is the length of the source sequence and
n is the length of the target sequence. The initial conditions for the recurrence
equation are:

di,0 = di−1,j + w(ai, ∅) (deletion)

d0,j = di,j−1 + w(∅, bj) (insertion)

d0,0 = 0

The weight function w, defines the cost of operations, such that e.g. w(a4, ∅)
returns the cost of deleting element a4 from the source sequence, and w(a3, b5)
returns the cost of replacing element a3 from the source sequence by the element
b5 of the target sequence.

For two sequences a and b, consisting of m and n elements respectively, the
values di,j (with 0 ≤ i ≤ m and 0 ≤ j ≤ n) are stored in an n + 1 by m + 1
matrix. The value in the cell at the lower-right corner, dm,n is taken as the
distance between a and b, that is, the minimal cost of transforming the sequence
〈a0, ..., am〉 into 〈b0, ..., bn〉.

2.2 Choosing the Edit Operations

The decision which edit operations to provide for matching is important, since
after annotation, the performances will be represented by the optimal sequence
of edit operations. As such, the edit operations define the concepts that we use to
describe performances. Here we propose a set of edit operations that correspond
to the variety of phenomena that we have actually encountered in a set of real
jazz performances. These edit operations can be visualized in a class hierarchy
(as in figure 1) to make explicit the characteristics of their behavior. Note that
all the operations refer to one or more elements in one (or both) of the sequences
that are aligned. We can distinguish, within this general class of Reference op-
erations, those that refer to notes in the score sequence and those that refer
to elements in the performance sequence. Deletion operations refer to notes of
the score sequence that are not present in the performance sequence (i.e. the
notes that are not played), therefore they can be classified as Score-Reference
operations. Conversely, insertion operations refer only to elements in the per-
formance sequence (i.e. the notes that were added), so they form a subclass of
Performance-Reference operations. Transformation, consolidation and fragmen-
tation operations refer to elements from both the score and the performance
and thus form a shared subclass of Score-Reference and Performance-Reference
operations. We call this class Correspondence operations.

The Reference, Score-Reference, Performance-Reference and Correspondence
classes are abstract classes that are just conceived to express the relationships
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Fig. 1. A hierarchical representation of edit operations for performance annotation.
The unboxed names denote abstract classes; the light gray boxes denote ‘concrete’
classes that are are implemented as edit operations. The dark gray boxes denote classes
that are derived from the concrete classes

between concrete classes of operations, and are not actually identified in the
matching process. The concrete classes, that are defined as real edit operations
in the matching process are depicted in figure 1 with light gray boxes. They are:

Insertion Represents the occurrence of a performed note that is not in the score
Deletion Represents the non-occurrence of a score note in the performance
Consolidation Represents the agglomeration of multiple score notes into a

single performed note
Fragmentation Represents the performance of a single score note as multiple

notes
Transformation Represents the change of nominal note features
Ornamentation Represents the insertion of one or several short notes to an-

ticipate another performed note

In the case of Transformation, we are not only interested in the one-to-one
correspondence of performance elements to score elements itself, but rather in
the changes that are made to attribute values of score notes when they are trans-
formed into performance elements. Therefore, we view transformation operations
as compositions of several transformations, e.g. pitch transformations, duration
transformations and onset transformations. Since these transformations can oc-
cur simultaneously, they are not suitable for using them in an edit distance,
where each sequence element is covered by exactly one operation. Our solution
is to have a single Transformation operation for the computation of the align-
ment, as a rough identification. In a second stage, after the alignment has been
computed, the score and performance events corresponding to Transformation
operations can be compared in more detail to establish which of the pitch, du-
ration, and onset transformation really occurred. The corresponding classes are
shown in figure 1 as dark gray boxes.

Based on the fact that the phrases in our data set were played by a profes-
sional musician and they were performed quite closely to the score, it may be
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Fig. 2. performance annotation of the first phrase of Once I Loved, played by a saxo-
phone at 220 bpm. The bars below denote the played notes (the bar lengths are rep-
resentative for the note durations). The annotation is the sequence of edit operations
in the middle. ‘T’ is for transformation (of duration and onset), ‘F’ for fragmentation,
and ‘C’ for consolidation

thought that the performances could be described by only correspondence oper-
ations, that map a score element to a performance element, perhaps with minor
adjustments of duration and onset. However, as mentioned before, most actual
performances, and indeed the performances in our data set, are not such literal
reproductions of the score; they contain extra notes, or lack some notes from the
score. Listening to the performances revealed that these were not unintentional
performance errors, since they were often found on the same places in various
performances of the same phrase and the effect sounded natural. This implies
that in addition to correspondence operations, insertion and deletion operations
are also required. Apart from real insertions of notes, that gave the impression of
an elaboration of the melody (such insertions occurred, but were rare), another
type of insertion was found to occur rather often: ornamentation. By ornamen-
tation we refer to one or more very short notes (typically about 100 or 200
ms.) that are usually a chromatic approach from below to the next score note.
We have found such ornamentations to consist of one, two or three notes. Fur-
thermore, we observed that consolidation (as described in the previous section)
occurred in some performances. Occasionally, we found cases of fragmentation.
Other transformations, such as sequential transposition (reversal of the tempo-
ral order of notes) were not encountered. Thus, the set of operations shown in
figure 1 initially seem to be adequate for representing performances with respect
to the scores.

Figure 2 shows the annotation of a melodic phrase from the song ‘Once I
Loved’. The performer fragmented the third note into two shorter notes, and in
the repetition of triplet notes, there are two cases of consolidations. The other
notes were played as is, with a lesser or greater degree of deviation in onset time
and duration.

2.3 The Cost Values

Once the set of edit operations is determined, we need to decide good cost values
for each of them. Ideally, the cost values will be such that the resulting optimal
alignment corresponds to an intuitive judgment of how the performance aligns
to the score (in practice, the subjectivity and ambiguity that is involved in
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establishing this mapping by ear, turns out to be largely unproblematic). The
main factors that determine which of all the possible alignments between score
and performance is optimal, will be on the one hand the features of the note
elements that are involved in calculating the cost of applying an operation, and
on the other hand the relative costs of the operations with respect to each other.

In establishing which features of the compared note elements are considered
in the comparison, we have taken the choices made by Mongeau and Sankoff [8]
as a starting point. In addition to pitch and duration information (proposed by
Mongeau and Sankoff), we have decided to incorporate the difference in position
in the costs of the correspondence operations (transformation, consolidation and
fragmentation), because this turned out to improve the alignment in some cases.
One such case occurs when one note in a row of notes with the same pitch and
duration is omitted in the performance. Without taking into account positions,
the optimal alignment will delete an arbitrary note of the sequence, since the
deletions of each of these notes are equivalent based on pitch and duration in-
formation only. When position is taken into account, the remaining notes of the
performance will all be mapped to the closest notes in the score, so the deletion
operation will be performed on the score note that remains unmapped, which is
often the desired result.

It is important to note that when combining different features, like pitch,
duration and onset into a cost-value for an operation, the relative contribution
of each term is rather arbitrary. For example when the cost of transforming one
note into another would be defined as the difference in pitch plus the difference
in duration, the outcome depends on the units of measure for each feature. The
relative weight of duration and pitch is not the same when measured in seconds,
as when measured in beats. Similarly, pitch could be measured in frequency,
semitones, scale steps, etcetera. Therefore, we have chosen a parametrized ap-
proach, in which the relative contribution of each term in the weight function is
weighted by a constant parameter value.

The other aspect of designing cost-functions is the relative cost of each opera-
tion. After establishing the formula for calculating the weights of each operation,
it may be that some operations should be systematically preferred to others. This
independence of costs can be achieved by multiplying the cost of each operation
by a factor and adding a constant.

The cost functions w for the edit operations are given below. The arguments
of the functions are elements from a sequence of score notes s, and a sequence
of performed notes p. P, D, and O are functions such that P(x) returns the
pitch (as a MIDI number) of a score note or performed note x, D(x) returns its
duration, and O(x) returns its onset time. Equations 1, 2, 3, 4, 5, 6 define the
costs of deletion, insertion, ornamentation, transformation, consolidation and
fragmentation, respectively.

w(si, ∅) = αd · D(si) (1)

w(∅, pj) = αi · D(pj) (2)
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w(∅, pj , · · · , pj+L+1) = αo ·

β ·
∑L

l=1
|1 + P(pj+l)− P(pj+l−1) |+

χ ·
∑L

l=0
D(pj+l) |

 (3)

w(si, pj) = αt ·


β· |P(si)− P(pj) | +

χ· |D(si)−D(pj) | +

δ· |O(si)−O(pj) |

 (4)

w(si, ..., si+K , pj) = αc ·


β ·

∑K

k=0
|P(si+k)− P(pj) | +

χ· |D(pj)−
∑K

k=0
D(si+k) | +

δ· |O(si)−O(pj) |

 (5)

w(si, pj , ..., pj+L) = αf ·


β ·

∑L

l=0
|P(si)− P(pj+l) | +

χ· |D(si)−
∑L

l=0
D(pj+l) | +

δ· |O(si)−O(pj) |

 (6)

The parameters β,χ, and δ control the influence of pitch, duration, and onset,
respectively. αd, αi, αo, αt, αc, and αf are the parameters that scale the costs of
deletion, insertion, ornamentation, transformation, consolidation and fragmen-
tation, respectively.

The costs of transformation (4), consolidation (5), and fragmentation (6),
are principally constituted of the differences in pitch, duration and onset times
between the compared elements. In the case of one-to-many matching (frag-
mentation) or many-to-one (consolidation), the difference in pitch is calculated
as the sum of the differences between the pitch of the single element and the
pitches of the multiple elements. The difference in duration is computed between
the duration of the single element and the sum of the durations of the multiple
elements. The difference in onset is computed between the onset of the single
element and the onset of the onset of the first of the multiple elements. The
cost of deletion (1) and insertion (2)is determined by the duration of the deleted
element. The cost of ornamentation (3) is determined by the pitch relation of the
ornamentation elements and the ornamented element (chromatically ascending
sequences are preferred), and the total duration of the ornamentation elements.

3 Experimentation

The introduction of the nine parameters in the cost functions comes with the
problem of finding appropriate values for those parameters. Although the edit
distance has some robustness (it aligns sequences reasonably well, even if bad
parameter values are chosen), it is difficult to bring the amount of annotation
errors down to a few percent. Manually tuning the parameters is possible for a
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small set of performances, but this becomes unfeasible for larger sets (adjust-
ments that improve the annotation of one performance, worsened the annotation
of others). Therefore, we have employed a genetic algorithm to obtain a good pa-
rameter setting. In this section we describe our experimentation with the tuning
of the parameters.

The idea of the evolutionary optimization of the parameter values is rather
simple: an array of the nine parameter values (one value for each parameter) can
be treated as a chromosome. The number of errors produced in the annotation
of a set of performances using that set of parameter values, is inversely related
to the fitness of the chromosome. By evolving an initial population of (random)
chromosomes through crossover, mutation and selection, we expect to find a set
of parameter values that minimizes the number of annotation errors, and thus
improves automatic performance annotation.

We are interested in two main questions. The first is whether it is possible
to find a parameter setting that works well in general. That is, can we expect a
parameter setting that worked well for a training set to perform well on unseen
performances? The second question is whether there is a single setting of pa-
rameter values that optimizes the annotations. It is also conceivable that good
annotations can be achieved by several different parameter settings.

3.1 Experiment Setup

We have run the genetic algorithm with two different (non-overlapping) training
sets, both containing twenty performances. These were (monophonic) saxophone
performances of eight different phrases from two jazz songs (Body and Soul, and
Once I Loved), performed at different tempos. For each of the performances,
the correct annotation was available. The fitness of the populations was assessed
using these annotations.

The fitness evaluation of a population (consisting of 20 chromosomes) on the
training set is a rather time consuming operation. Therefore, it can take a long
time before a good solution is obtained, starting the evolution with a randomly
initialized population. In an attempt to solve this problem, we initialized the
population with solutions that were trained on the individual phrases of the
training set (which is a much faster procedure). Assuming that the solution
optimized for one phrase may in some cases work for other phrases, this speeds
up the time needed to find a good solution for the whole training set.

A new generation is generated from an old generation as follows: From the
old generation (consisting of N chromosomes), the k best chromosomes are se-
lected (where k is dependent on the distribution of the fitness across the popula-
tion); Then, N − k new chromosomes are created by a cross-over of the selected
chromosomes; The newly generated chromosomes are mutated (multiplying each
parameter value by a random value), and the N − k mutated chromosomes, to-
gether with the n (unchanged) chromosomes from the old generation, form the
new generation.
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Fig. 3. Estimated parameter values for two different training sets (Tr1 and Tr2). Three
runs were done for each set (a, b, and c). The x-axis shows the nine different parameters
of the cost functions (see section 2.3). For each parameter the values are shown for each
run on both training sets

3.2 Fitness Calculation

The fitness of the chromosomes is calculated by counting the number of annota-
tion errors using the parameter values in the chromosome. For example, assume
that the correct annotation of a melodic fragment is ‘T T C T’, and the annota-
tion of that fragment obtained by using the parameter values of the chromosome
is ‘T T T I T’ (that is, a consolidation operation is confused with an transfor-
mation and an insertion operation). The ‘C’ doesn’t match to an element in
the second sequence, and the ‘T’ and ‘I’ don’t match to elements in the first
sequence and thus three errors occur. To count the errors between the correct
and the predicted annotations (which are represented as sequences of symbols),
we use the edit-distance (don’t confuse this use of the edit-distance to compare
annotations with the use of the edit-distance to generate annotations).

For a given set S of performances (for which the correct annotations are
known), we define the fitness of a chromosome c as:

fit(c) =
1

E(c, S) + 1

where E(c, S) is the total number of errors in the predicted annotations for S
using the parameter values in c. The fitness function fit ranges from zero to one.
Obviously, a fitness value of one is the most desirable, since it corresponds to
zero annotation errors.

3.3 Results

For each of the two training sets, Tr1 and Tr2, the evolution algorithm was run
three times. The resulting parameter settings are shown in figure 3. Table 1
shows the number of annotation errors each of the parameter settings produced
on the training sets, and on a test set (a set of 35 performances, none of which
occurred in Tr1 or Tr2). The average number of annotation errors on the test
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set is about 32 on a total of 875 annotation elements in the test set, an error-
percentage of 3.66%. This is only slightly higher than the error-percentages on
the training sets: 2,60% for Tr1, and 2,37% for Tr2 (averaged over three runs),
and substantially lower than the average error-percentage of random parameter
settings on the test set, which is about 13,70%.

Tr1a Tr1b Tr1c Tr2a Tr2b Tr2c

Errors on Train 19 (3.89) 9 (1.84) 10 (2.05) 11 (2.30) 12 (2.51) 11 (2.30)
Errors on Test 19 (2.17) 26 (2.97) 30 (3.43) 19 (2.17) 32 (3.66) 65 (7.43)

Table 1. Annotation errors produced by the obtained solutions for three different
runs (denoted by the letters a, b, and c) on two different training sets (Tr1 and Tr2)
and a test set. The first row shows the number of errors on the set that the solutions
were trained on, and the corresponding percentages in parentheses (Tr1 contained 488
annotation elements in total, and Tr2 contained 479). The second row shows the number
of errors on the test set (875 elements), with percentages in parentheses

Table 2 shows the pair-wise correlations of the values. As can be seen from
the cross-correlations in the table, the parameter settings did not all converge
to the same values. Nevertheless, there were some cases in which the parameters
were highly correlated. In particular the solutions found in runs Tr1a, and Tr2a
are highly similar (this can be easily verified by eye in figure 3. A rather strong
correlation is also observed between the solutions found in Tr1c and Tr2b, and
those in Tr1b, and Tr2c. It is interesting that the correlated solutions were
obtained using non-overlapping sets of performances. This is evidence that the
solutions found are approximations of a single parameter setting that is valid
for the performances in both training sets. In the case of the solutions of Tr1a
and Tr2a, the approximated parameter setting may also have a more general
validity, since both solutions have a low error number of annotations on the test
set as well (see table 1).

Tr1a Tr1b Tr1c Tr2a Tr2b Tr2c

Tr1a 1.00 -0.32 -0.70 0.92 -0.32 -0.28
Tr1b -0.32 1.00 0.17 -0.02 -0.33 0.68
Tr1c -0.70 0.17 1.00 -0.61 0.76 0.07
Tr2a 0.92 -0.02 -0.61 1.00 -0.33 -0.12
Tr2b -0.32 -0.33 0.76 -0.33 1.00 -0.47
Tr2c -0.28 0.68 0.07 -0.12 -0.47 1.00

Table 2. Cross-correlations of the parameter values that were optimized using two
different training sets (Tr1 and Tr2), and three runs for each set (a, b, and c)
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4 Conclusions and Future Work

We have presented a method to enhance the automatic annotation of music
performances. The annotation includes information about e.g. note ornamenta-
tions and deletions as part of the musical expressivity. To correctly detect such
phenomena, an evolutionary approach was chosen to optimize the parameter
values of cost functions, that were used in the (edit distance based) performance
annotation process.

Two main questions we have tried to answer is whether it is possible to find a
parameter setting that has a broader validity than just the set of performances it
was optimized for, and whether there is a single parameter setting that optimizes
the annotations. All solutions from different trials on two non-overlapping sets of
performances substantially improved the quality of annotation of a test set over
random parameter settings. Moreover, cross-correlations were found between
some parameter settings that were optimized for different training sets. This
suggests that they are approximations of a parameter setting that works well
for a larger group of performances. In general however, the solutions did not all
converge to a single set of parameter values.

In the future, we wish to extend the experiments to see whether the solutions
found converge to a limited range of parameter settings. And if so, we wish to
investigate how the distributions of values over the parameters relate to each
other (for example, do high αc values imply low χ and δ values and vice versa?).
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