Skip to main content

Priority Algorithms for Graph Optimization Problems

  • Conference paper
Approximation and Online Algorithms (WAOA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3351))

Included in the following conference series:

Abstract

We continue the study of priority or “greedy-like” algorithms as initiated in [6] and as extended to graph theoretic problems in [9]. Graph theoretic problems pose some modelling problems that did not exist in the original applications of [6] and [2]. Following [9], we further clarify these concepts. In the graph theoretic setting there are several natural input formulations for a given problem and we show that priority algorithm bounds in general depend on the input formulation. We study a variety of graph problems in the context of arbitrary and restricted priority models corresponding to known “greedy algorithms”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelopoulos, S.: Order-preserving transformations and greedy-like algorithms. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 197–210. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Angelopoulos, S., Borodin, A.: On the power of priority algorithms for facility location and set cover. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 26–39. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability—towards tight results. SIAM Journal on Computing 27, 804–915 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berman, P., Fujito, T.: On approximation properties of the independent set problem for degree 3 graphs. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 449–460. Springer, Heidelberg (1995)

    Google Scholar 

  5. Boppana, R., Halldórsson, M.M.: Approximating maximum independent sets by excluding subgraphs. Bit 32, 180–196 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borodin, A., Nielsen, M., Rackoff, C.: (Incremental) priority algorithms. Algorithmica 37, 295–326 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borodin, A., Boyar, J., Larsen, K.S.: Priority algorithms for graph optimization problems. Preprint PP-2004-10, Department of Mathematics and Computer Science, University of Southern Denmark (2004)

    Google Scholar 

  8. Clarkson, K.L.: A modification of the greedy algorithm for vertex cover. Information Processing Letters 16, 23–25 (1983)

    Article  MathSciNet  Google Scholar 

  9. Davis, S., Impagliazzo, R.: Models of greedy algorithms for graph problems. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (2004)

    Google Scholar 

  10. Dinur, I., Safra, S.: The importance of being biased. In: Proceedings of the 34th Symposium on Theory of Computing, pp. 33–42. ACM Press, New York (2002)

    Google Scholar 

  11. Edmonds, J.: Matroids and the greedy algorithm. Mathematical Programming 1, 127–136 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Journal of Computer and System Sciences 57, 187–199 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Information Processing Letters 45, 19–23 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hochbaum, D.: Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Applied Mathematics 6, 243–254 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9(3), 256–278 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  17. Khanna, S., Linial, N., Safra, S.: On the hardness of approximating the chromatic number. Combinatorica 20(3), 393–415 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lehmann, D., O’Callaghan, L., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. Journal of the ACM 49(5), 1–26 (2002)

    Article  MathSciNet  Google Scholar 

  19. Papadimitriou, C., Yannakakis, M.: Optimization, approximation and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Szekeres, G., Wilf, H.S.: An inequality for the chromatic number of graphs. Journal of Combinatorial Theory 4, 1–3 (1968)

    Article  MathSciNet  Google Scholar 

  21. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borodin, A., Boyar, J., Larsen, K.S. (2005). Priority Algorithms for Graph Optimization Problems. In: Persiano, G., Solis-Oba, R. (eds) Approximation and Online Algorithms. WAOA 2004. Lecture Notes in Computer Science, vol 3351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31833-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31833-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24574-2

  • Online ISBN: 978-3-540-31833-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics