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Abstract

This paper studies quantum refereed games, which are guoanteractive proof systems
with two competing provers: one that tries to convince thefiee to accept and the other that
tries to convince the verifier to reject. We prove that evanguage having an ordinary quan-
tum interactive proof system also has a quantum referee@ gawhich the verifier exchanges
just one round of messages with each prover. A key part of maffis the fact that there exists
a single quantum measurement that reliably distinguislkeésden mixed states chosen arbi-
trarily from disjoint convex sets having large minimal eatistance from one another. We also
show how to reduce the probability of error for some classegiantum refereed games.

1 Introduction

A refereed gameonsists of a conversation between a computationally bedindrifier and two
computationally unbounded provers regarding some inpirigst. The two provers use their
unbounded computational power to compete with each othee: poover, called thges-prover
attempts to convince the verifier to acceptvhile the other prover, called thm®-prover attempts

to convince the verifier to rejeat. At the end of the interaction, the verifier decides whetber t
accept or reject the input, effectively deciding which of the provers wins the gameclsgames
represent games of incomplete information; the messaggmpged between one prover and the
verifier are considered to be hidden from the other player.

A languagel is said to have a refereed game with egrd@rthere is a polynomial-time verifier
satisfying the following conditions. For each string L, there exists a yes-prover that can always
convince the verifier to acceptwith probability at least —<, regardless of the no-prover’s strategy,
and for eachx ¢ L, there exists a no-prover that can always convince the e@etdirejectr with
probability at leastt — ¢, regardless of the yes-prover’s strategy.tudn for one of the provers
consists of a message from the verifier to that prover, faby a response from that prover back
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to the verifier. One may consider the case where the prowarss tare played sequentially or in
parallel.

The refereed games model is based on the interactive pretgraymodel(|11), 12,13, 4], which
has a rich history that we will not survey here. The referemahes model, and variations on this
model, were considered in the classical case in Rets$.[]14, [84,[9,[6], among others. Much
of what is known about the complexity-theoretic aspect$efdlassical refereed games model is
due to Feige and KiliarL|6]. The class of languages havingsital refereed games in which the
provers may play any polynomial number of turns coincide WKP (deterministic timer™ for
some polynomiap). The simulation oEXP by a polynomial-turn refereed game is due to Feige
and Kilian [6], and is based on arithmetization techniqueettgped by Lund, Fortnow, Karloff
and Nisan[[1b] and used in proofs Bt = PSPACE [20,[21]. The simulation of polynomial-
turn refereed games iBXP is due to Koller and Megidda [14]. On the other hand, the ct#ss
languages having games in which the provers play preciseyturn each, with the turns played
in parallel, coincides witi°PSPACE [6]. Apparently little is known about the expressive power
of classical refereed games intermediate between thesexisemes. For instance, games with
a constant number of prover turns may correspondSBACE, EXP, or some complexity class
between the two.

Similar to the classical case, quantum refereed games aesllmn the quantum interactive
proof system model[22, 13]. Quantum refereed games difben tlassical ones in that the provers
and the verifier may perform quantum computations and exgggnantum messages. Our two
main motives for considering the quantum refereed gameghaoe to better understand the power
of quantum interactive proof systems and to examine theteffequantum information on the
complexity of finding strategies for two-player games.

The main result of this paper establishes that any languagedha quantum interactive proof
system also has a quantum refereed game with exponentiadil probability of error wherein
each prover plays just one turn (with the yes-prover playirgg). An interesting fact about the
resulting game from the point of view of understanding quaninteractive proofs is that entan-
glement between the provers and the verifier does not playad@yn this game. More specifically,
the game we define has the following general form: the yeseprgends the verifier a mixed quan-
tum state, the verifier processes this state and sends sataécsthe no-prover, and the no-prover
measures the state and sends a classical result to thervériie verifier checks the result of the
measurement and accepts or rejects.

A key ingredient for our result is an information-theoredgsertion stating that there exists a
guantum measurement that can reliably distinguish betsteas chosen from two disjoint convex
sets of quantum states. This assertion generalizes a malskfact about the relation between the
trace distance between two states and their distinguityabnd may be viewed as a quantitative
version, from the point of view of quantum information thgaof the fact from convex analysis
that disjoint convex sets are separated by some hyperplane.

The remainder of this paper is organized as follows. We bbygidefining quantum refereed
games in Sectidd 2. In Sectibh 3 we prove the fact concerngggnrements distinguishing convex
sets mentioned previously. Using this fact, we then prov8ention[# that a two-turn quantum
refereed game exists for any language having a quantunaatikez proof system. In Sectigh 5 we



describe a method for error reduction in two-turn quantufareed games. The paper concludes
with Sectior 6, which mentions some open problems.

2 Definitions

In this section we define the quantum refereed games modedand complexity classes based
on this model. Throughout the paper we assume all stringe\amethe alphabet = {0, 1}. For

x € X, |x| denotes the length of. We let poly denote the set of polynomial-time computable
functionsf : N — N\ {0} for which there exists a polynomial such thatf(n) < p(n) for

all n. We also let2=7°% denote the set of polynomial-time computable functiensuch that
e(n) = 27/™ for all n for somef € poly.

The model for quantum computation that provides a basisdantym refereed games is the
guantum circuit model, with which we assume the reader isli@mAs mentioned in Sectiod 1, a
guantum refereed game has a verifieand two competing proveis andN. Each ofV/, Y, and N
is defined by a mapping on input stringss >* whereV/'(x), Y (x), andN(x) are each sequences
of quantum circuits. The circuits in these sequences amas to be composed only of gates
taken from some universal set of quantum gates. Thus, eattte @ircuits implements a unitary
operation on its input qubits. However, we lose no gengraltallowing only unitary operations
because arbitrary admissible quantum operations, inojudieasurements, can be simulated by
unitary circuits as described in Ref! [1].

For each prover, the qubits upon which that prover’s ciecadt are partitioned into two sets:
one set of qubits is private to that prover and the other iseshwith the verifier. These shared
qubits act as a quantum channel between the verifier andribzagp No restrictions are placed on
the complexity of the provers’ circuits, which captures tiodion that the provers’ computational
power is unbounded—each of the provers’ circuits can beetksas an arbitrary unitary operation.

The qubits on which the verifier’s circuits act are partigdnnto three sets: one set is private to
the verifier and two sets are shared with each of the provers.dDthe verifier's private qubits is
designated as theutput qubit At the end of the game, acceptance is dictated by a measnteime
the output qubit in the computational basis. We also reghaethe verifier's sequence of circuits
V(x) be generated by a polynomial-time Turing machine on inpuThis uniformity constraint
captures the notion that the verifier's computational pasémited.

In addition to the verifier and provers, a quantum refereedegaonsists of grotocol that
dictates the number and order of turns taken by the provel® circuits in the verifier's and
provers’ sequences are applied to the initial state in whaith qubit is in stat®)) in such a way
as to implement the protocol of the game.

The games we study in this paper have the following protazoftessage from the yes-prover
to the verifier, a message from the verifier to the no-proved, @ message from the no-prover
the the verifier. Quantum refereed games that follow thisqma will be calledshort quantum
games We note that entanglement between the provers and theevasifimmaterial in games
of this form—each prover takes only one turn, and thus haseeal o remember anything after
his turn ends. Thus, when convenient, we may assume thatakierp do not have private qubits
but instead may perform arbitrary admissible quantum djmers (i.e., completely positive trace-
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preserving maps) on their message qubits.

We now define the complexity claS€G based on short quantum games of the type just de-
scribed. For, s : N — [0, 1], the setSQG(c, s) consists of all languages C X* for which there
exists a verifiel/ for a short quantum game such that the following conditiarid:h

1. There exists a yes-prover such that, for all no-proverd” and allz € L, Y (x) convinces
V (z) to acceptr with probability at least — ¢(|x|); and

2. There exists a no-prove¥ such that, for all yes-proveis and allz ¢ L, N(z) convinces
V (z) to rejectz with probability at least — s(|z|).

The functions: ands are called theompleteness err@andsoundness errgrespectively. We write
SQG to denote the class of all languages ¥* such thatl. € SQG(e, ) for everye € 277,

The clasQIP contains all problems having single-prover quantum irttidra proof systems
as in Ref.[[18]. The main complexity-theoretic result of gresent paper states tH@iP C SQG.
We prove this result by exhibiting a short quantum game tblaes a promise problem called the
CLOSEIMAGES problem, which is known to be complete fQtP [13]. It is convenient for us to
use the formulation of this problem based on the one founckin [R9].

The promise problencLOSEIMAGES is defined for any desired € 27°% as follows. Given
are descriptions of two mixed-state quantum circditsand ¢);, which both implement some
admissible transformation from qubits tom qubits. The promise is that exactly one of the
following conditions holds:

1. There existi-qubit mixed statep, andp; such that)q(py) = Q1(p1); or

2. For alln-qubit mixed statep, andp;, the states),(po) and@+(p;) have fidelity squared at
mostes(n).

In other words, the images @), and (@, are either overlapping or are far apart. The goal is to
accept when case 1 holds and reject when case 2 holds.

3 Distinguishing Convex Sets of Quantum States

We motivate discussion in this section by pointing out tf@tany mixed-state quantum circup,
the imaged = {Q(p) : p a mixed statg of the admissible transformation associated wijtlis a
compact, convex set of mixed states. If the images of twaitg ), and(), are far apart, then one
could reasonably hope that there is a quantum measurenanetiably distinguishes between
outputsQy(po) andQ:(p;) of these transformations, with the measurement dependilyga @
and(@, and not on the choice of input stat@sandp;. In this section we prove that indeed there
always exists such a measurement. More generally, we pha¥given any two disjoint convex
sets of mixed quantum states, there exists a single measatéhat distinguishes states drawn
arbitrarily from one set from the other with success prolitgldetermined by the minimal trace
distance between the sets. The short quantum game faLthe=IMAGES problem we define in
Sectiorl# relies upon the existence of such a measurement.
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Let us first begin with some notation. Given a finite dimenalddilbert spaceH, let L(#)
denote the set of all linear operatorsinlet H(7{) denote the set of all Hermitian operatorsin
let Pos(#) denote the set of all positive semidefinite operatorg/o@and letD(#) denote the set
of all density operators (i.e., unit trace positive semid&dioperators) ofi{. For A, B € L(H),
define(A, B) = tr ATB. This is an inner product oh(#) that is sometimes called the Hilbert-
Schmidt inner product.

For a vectoly)) € H, |||¢) || denotes the Euclidean norm faf). For an operatoA € L(H),
the operator norm ofl, denoted| A ||, is defined by

A
" A1) |

sup ————.
wyernfoy 1Y)l

The trace norm of4, denoted|| A||,,, is defined by|| A||,, = tr vV ATA. The trace norm and the
operator norm are dual to one another with respect to theeHiBchmidt inner product, meaning
that the following fact holds.

Fact 1. For everyA € L(H),

[All = max{[(B,A)|: BeL(H), |B, <1},
[All, = max{|(B,A)]: B L(#), | B[l <1}.

See, for instance, Bhatial [5] for a proof of this fact.

The trace norm characterizes the distinguishability ofvamipair of density matrices), p; €
D(H) in the following sense. There exists a binary-valued quantueasurement such that if
p € {po,p1} is chosen uniformly at random, then the measurement ctyrréetermines which
of py or p; was given with probabilityy + X|/po — o1l Furthermore, such a measurement is
optimal in the sense that no other quantum measurement caibpodistinguish betweem, and
p1 With a higher success rate. An immediate corollary of this ithat for a given paip, andp,,
there exists a measurement that correctly identifies a argiaéep € {po, p1} with probability of
correctness at least| po — p1 |,,, even ifp is chosen by an adversary that knows the measurement.

Consider the following variant of the distinguishabilityoblem: We are givep € D(H)
chosen from one of two disjoint convex sets of density opesatly, .4, C D(#), and we are
asked to determine the set from whiglwas chosen. For simplicity we will assum& and.A;
are closed sets. Under this assumption, it is meaningfuéfinel the trace distanchst(.A4,, A, )
betweenA, and.4,; as the minimum of the quantityp, — p:||,, over all choices op, € A, and
p1 € A;. We prove that there exists a single measurement with thgepnothat if an arbitrary
is chosen from4, with probability 1/2, and otherwiseis chosen from4,, then the measurement
correctly determines which sgiwvas chosen from with probability at Ie@tﬁ% dist(Ap, A;). This
fact therefore generalizes the fact concerning a singlegbajuantum states mentioned above, as
singleton sets are of course closed and convex. As abogdatttiimplies that ifp is chosen from
Ay U A, in an arbitrary manner, even depending on the measurersefif then the measurement
will correctly determine from which ofd, or A; the statep was chosen with probability at least
% diSt(.A(), .Al)




The proof of this fact begins with a well-known result frormeex analysis, which informally
states that there exists a separating hyperplane betwgemvardisjoint convex sets. Typically,
the separation result is stated in terms of the vector sf&cebut it translates td(#) for a
given spaceH without complications, a¥1(H) may be identified with the vector spate™”’,
for m = dim(#). Here we state a restricted variant of this fact that is mosvenient for our
purposes—see Rockafellar [18], for instance, for a moregdstatement.

Fact 2. Let. A, B C H(H) be disjoint convex sets with compact and3 open. Then there exists a
Hermitian operatord € H(#) and a real numbet € R such that{H, X) > a > (H,Y’) for all
X € AandY € B.

We are now ready to state and prove the main result of thigosect

Theorem 3. Let Ay, 4, C D(H) be closed convex sets of density operators. Then there exist
measurement operatois), £; € Pos(H) with Ey + E; = I such that the following holds. For
every pairpy € Ay andp; € Ay, if p is chosen uniformly frompo, p1} and measured via the
measurementEy, £}, the measurement will correctly determine whether A, or p € A; with
probability at leasts + 1 dist(Ao, A,).

Proof. Let d = dist(Ay,.A1). If d = 0, the theorem is trivially satisfied by the measurement
defined byFy = F, = %I (which is equivalent to a random coin-flip), so assume ¢hat0. Let

A=Ay — A1 ={po—p1:po € Ay,p1 € A}
ThenA is a compact convex set of Hermitian operators @Ad|, > d for every X € A. Let
B={Y e H(H): Y], <d}

denote the open ball of radidsn H(7) with respect to the trace norm. The sgtsnd B satisfy
the conditions of Fadfl2, and therefore there exists a HemmaperatorH € H(#) and a real
numbera € R such that 4, X) > a > (H,Y) forall X € AandY € B. Becaus&” € 5 if and
only if —Y € B for everyY, it follows that—a < a, and therefore > 0.

Let K = ¢H. We therefore have thdt<, X) > d for everyX € A and(K,1Y) < 1 for
everyY € B. As éY ranges over all Hermitian operators with trace norm smafan 1, this
implies || K|| < 1 by Facd. Now, letk ", K~ € Pos(H) denote the positive and negative parts
of K, meaning that they satisfif = K+ — K~ and(K*, K~) = 0. As| K| < 1 it follows that
Kt+ K- <I.

At this point we definey, £, € Pos(H) as follows:

1 1
By=K'+5(I-K'~K") and By =K +(I- K" ~K").

The operatorgy, and F; are both positive semidefinite and satigfy + £, = I, and therefore
represent a binary-valued POVM.



Now suppose, € Ay, andp; € A; are chosen arbitrarily, andis chosen uniformly from the
set{po, p1}. Let C denote the event that the measurem{éiit, £, } correctly determines which of
po andp; was selected. We haw[C] = 1 (Eq, po) + 3(E1, p1), and therefore

1 1 d
Pr[C] = Pr[=C] = S(Eo = Ev, po = p1) = 5(K,po = p1) = 5,
with the inequality following from the fact thaty — p; € A. Consequently the measurement is
correct with probability at least + ¢ as required. O

4 A Short Quantum Game for QIP

In this section, we prove that any language with a quantueraective proof system also has a short
guantum game by solving tl@P-complete problencLOSEIMAGES from SectioriR.

First, let us recall that the fidelity'(p, £) between two quantum statess € D(#H) is defined
asF(p,¢) = ||v/pvE|,- The following fact, proved by Fuchs and van de Graaf [10}egione
relationship between the fidelity and the trace norm.

Fact 4. Letp,{ € D(H). Then

1 1
L= Lol < Flo. < /1 2o el

We are now ready to state and prove the main result of thigosect
Theorem 5. QIP C SQG (1/2,277°%).

Proof. It suffices to show thatLOSEIMAGES is in SQG(1/2,277°). Suppose the input encodes
mixed state quantum circuit3, and (Q;, each mapping qubits tom qubits. LetH and K be
Hilbert spaces with dimensior28 and2™ corresponding to the input qubits andn output qubits
respectively. We may view), and(); as corresponding to admissible transformati@isQ) :
D(H) — D(K). Let A; = {Qi(p) : p € D(H)} € D(K) denote the image ap; fori = 0, 1.
The sets4, and.A; are closed, convex sets of density operators.

Consider the following verifier for a short quantum game:

1. Receiven-qubit registersX, andX; from the yes-prover.

2. Choose € {0,1} uniformly at random and applg); to registerX;. Let the output be
contained in amn-qubit registery, which is then sent to the no-prover.

3. Receive a classical kitfrom the no-prover. Accept #f # i and reject ifb = i.

If (Qo, Q1) is a “yes” instance oCLOSEIMAGES then there exispy, p; € D(H) such that
Qo(po) = Q1(p1). The strategy for the yes-prover is to prepare the regiXtesdX; in statesp,
andp,, respectively, and to send them to the verifier in step 1 olvérdier’'s protocol. Because
Qo(po) = Q1(p1), the state contained in the registeis independent of, so the no-prover can do
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no better than randomly guessing in step 3. The verifier Wdréfore accept with probability/2
in this case.

If (Qo, Q1) is a “no” instance ofcLOSEIMAGES then for any desired € 277% we are
promised that

V) > | max (F(Qul€0): Qu(€)} > 1 - 5 dist(As, Ay).

T &.61€D(H

It follows thatdist (A, A1) > 2 — 24/e(n).

Regardless of the state of the regist&gsand X, sent to the verifier by the yes-prover, we
must have that the reduced state of the registasent to the no-prover is given by some state
¢ € Ay U Ay, and moreover thar[{ € Ay = Pr[¢ € A;] = 1/2. By Theoren(B there exists
a quantum measuremefit, £} that correctly determines whethpre A, or p € A; with

probability at least

1 1 e(n

3 + 1 dist(Agp, A1) > 1 — 72( )
The strategy for the no-prover is to perform the quantum oressent £y, £, } and send the result
to the verifier in step 3. This causes the verifier to rejedhwibbability at least — /=(n)/2. As
this argument holds for eveeyc 2-7°% we have that the soundness errarig&’” as required. [

5 Error Reduction

Suppose that both the completeness and soundness @mdr of a refereed game are bounded
below1/2 by an inverse polynomial. Then it follows from Chernoff balsrthat these error prob-

abilities can be made exponentially close to zero by repgatie game a polynomial number
of times in succession and taking a majority vote. Of coussguential repetition necessarily in-
creases the number of turns in the game and so it is naturskiberror reduction can be achieved
without affecting the turn complexity of the game.

A natural approach to this task is to run many copies of thereefd game in parallel and to
accept or reject based on the outcomes of the repetitionis. t&dehnique is purely classical and
has been successfully applied to classical single- and+pralver interactive proof systems (see
for example Ref.[[16] and the references therein). A poaéptioblem with this technique is that
the provers need not treat each repetition independentigy-ight try to correlate the parallel
repetitions (or entangle them in the quantum case) in someuteway such that the completeness
and/or soundness error does not decrease as desired.

In the quantum setting, the general case of this problem biakseen completely solved. But
for three-message single-prover quantum interactivefgstems with zero completeness error,
Ref. [13] proves that parallel repetition followed by a umanous vote does indeed achieve the
exponential reduction in soundness error that one might@xpegardless of any possible entan-
glement by the prover among the parallel copies.

In this section, we prove that parallel repetition followsda unanimous vote can be used to
improve the error bounds for short quantum games by redubmgroblem to error reduction for



single-prover quantum interactive proof systems withehwe fewer messages. The reduction is
achieved by fixing a yes- or no-provérthat is guaranteed to win with a certain probability. By
viewing the verifier-prover paifV, P) as a new composite verifier, we are left with what is now
effectively a one- or two-message quantum interactivefgpstem in which the opposing prover
is the lone prover. We define a verifier-prover pdif’, P’) that runs many copies @i, P) in
parallel and accepts based on a unanimous vote. We can th@nyethe error reduction result
of Ref. [13] to prove that the error of the new game decreagpsreentially in the number of
repetitions.

We formalize this argument shortly, but first we require &éddal notation. Given finite-
dimensional Hilbert spaceq andC, let L(H, K) denote the set of all linear operators mapping
‘H to K and letT(#, K) denote the set of all linear operators mapping the vectaresbéH ) to
L(K). The trace norm can be extendedlt¢H, K) as follows. Fofl" € T(H, K),

||tr

|7(x)
IT), = sup S
XeL(H)\{0} ” Htr

Let £ be a Hilbert space withim(£) = dim(H) and let/y, ) denote the identity transformation on
L(£). Then forT € T(H, K), thediamond norm|T'||, of T'is given by|| T, = || T ® I, ||,,-
Further information on the diamond norm may be found in Kit&hen, and Vyalyil[12]. The
diamond norm satisfies several nice properties that the traan (extended t@'(#, X)) does not.
The diamond norm is multiplicative with respect to tensardarcts: || 77 @ Ts ||, = || T3], || Z2]|,
for any choice of transformatiori§ and7s.

We are now prepared to give the main result of this sectiomselproof is based on the proof
of Theorem 6 of Ref[]13].

Theorem 6. SQG(c,s) C SQG(kc,s*) N SQG(ck, ks) for any choice of, s : N — [0, 1] and
k € poly.

Proof. We first prove thatQG(c, s) C SQG(kc, s*). Let L € SQG(c, s) and letV (z) = (V(z)1,
V(x)2) be a verifier witnessing this fact. For the remainder of thi®f we assume that the input
x € ¥*is fixed. For brevity we drop the argument and wiite= (17, 1) and use similar notation
for the provers.

LetV’ = (VE* V%) be a verifier that runk copies of the protocol df in parallel and accepts
if and only if every one of thé copies accepts. We must show thédthas completeness error at
mostkc and soundness error at ma&t

First consider the casec L. LetY = (Y}) be a yes-prover that always convindéso accept
with probability at least — c. LetY’ = (Y,¥) be a yes-prover that rurisindependent copies of
the protocol ofY in parallel. Then no no-prover can win any one of theopies with probability
greater tham and so by the union bound we know that the completeness dittoe cepeated game
is at mostkc.

Next consider the case¢ L. Let N = (/V;) be a no-prover that always convincdédo reject
with probability at least — s. Let N’ = (N**) be a no-prover that runisindependent copies of
the protocol ofN in parallel. We now show that no yes-prover can win agaivistising verifier
V' with probability greater thag*.



Let I1;,;; denote the projection of the entire system onto the(liinitial state. Then the pro-
jectionIl/ ., = II2% corresponds to the initial state of the repeated game.Illgtdenote the
projection onto the states for which the output qubit belogdo V' is 1. Then the projection
1. = 12k corresponds to the accepting statd/éf Let Vy denote the Hilbert space correspond-
ing to the private qubits of” and the private and message qubits\ofand let My denote the
Hilbert space corresponding to the yes-prover’s messagigsqDefinel’y € T(Vy @ My, My)
as

TN (X) = trVN(Hinit)X(Hacc%Nlm)'

As mentioned earlier, we may vie@W, V) as a new composite verifier and the yes-prover as
the lone prover for some one-message quantum interactogd pystem (i.e., a message from the
prover to(V, N)). In this context, Lemma 7 of Refl._[L3] asserts that the maxmprobability
with which any prover could convince the verifigr, N) to accept: is preciselyi| T ||> . Because
(V, N) has soundness error at mestve have| Ty ||> < s.

Define a similar transformatiohly, € T((Vy ® My)®* M$¥) usingV’, N', I1, ., andIT’..
It follows that 7%, = T$*. From the multiplicativity of the diamond norm, it followhdt the
maximum probability with which any prover could convindé’, N’) to acceptr is

T2 = || T8 |12 = 1w 1> < s,

which establishes the desired result.

Due to the symmetric nature of quantum refereed games, wencalify the above proof to
show thatSQG(c, s) C SQG(c*, ks). In particular, define the verifier” so that he rejects if and
only if all k£ copies reject. For the case ¢ L, the proof thatl’” has soundness erréx is
completely symmetric to the proof thit has completeness errbr.

For the case € L, we letY andY” be yes-players as above. Define the Hilbert spaseand
My and the projectionH,; andIl, . in the appropriate symmetric manner as per the above proof.

rej

The transformatiody € T(Vy ® My, My) is defined as
TY (X) = trVy (m}qﬂinit)X(Hroj%)-

As before, we may viewl, Y') as a new composite verifier and the no-prover as the lone prove
for some quantum interactive proof system. The differeeze are that the quantum interactive
proof is now a two-message proof instead of a one-messagé [, a message frorfl’, V') to
the prover followed by the prover’s reply {&, Y)) and that the prover’s goal is now to convince
the verifier(V,Y') to rejectr instead of to accept.

Fortunately, it is still straightforward to apply Lemma 7Réf. [13] to this quantum interactive
proof system and so we may claim that the maximum probahilitih which any prover could
convince the verifiefV,Y) to rejectz is precisely||Ty ||>. That V" has completeness errof
follows as before. O

The proof of Theorerfl6 can be extended to allow for the slghtbre general protocol wherein
the verifier sends a message to the yes-prover (via sométdifgl) before the short quantum game
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commences. This extension follows from the fact that we ggilyaLemma 7 of Ref.[][13] to the
augmented transformations

TN(X) = trVN(VinitHinit)X(HacchZNl‘/l)a
TY<X) = trVy(‘/Im‘/initﬂiniOX(Hroj%)-

Combining TheoremBl 5 arid 6 we obtain the following corollaviich is the main result of
this paper.

Corollary 7. QIP C SQG.

Proof. Given a desired error bourtt” wherep € poly, chooses € 277°W so thatps < 277, We
haveQIP C SQG (1/2,¢) C SQG (277,277). O

6 Conclusion

We introduced in this paper the quantum refereed game mdaenoputation and gave a short
guantum game with exponentially small error for languagéis single-prover quantum interactive
proof systems. However, we have only scratched the surfatteequantum games model, and
many questions about it remain unanswered. Some exam{it®s.fo

e The two-turn game presented in this paper has an asymmattmcpl. Is there also a two-
turn quantum refereed game fQIP in which the no-prover sends the first message, or in
which the provers play one turn in parallel?

e Itis known thatQIP C EXP. How doesSQG relate toEXP?

e We mentioned in Sectidn 1 that classical refereed gameacteaizeEXP [6], which implies
that many-turn quantum refereed games are at least as pbagEXP. What upper bounds
can be proved on the power of refereed quantum games?

e \We demonstrated that parallel repetition followed by a imans vote can reduce error for
short quantum games. Is there a way to reduce the erranyrquantum refereed game
without affecting the number of turns in the game?
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