Skip to main content

Quantum Interactive Proofs with Competing Provers

  • Conference paper
STACS 2005 (STACS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3404))

Included in the following conference series:

Abstract

This paper studies quantum refereed games, which are quantum interactive proof systems with two competing provers: one that tries to convince the verifier to accept and the other that tries to convince the verifier to reject. We prove that every language having an ordinary quantum interactive proof system also has a quantum refereed game in which the verifier exchanges just one round of messages with each prover. A key part of our proof is the fact that there exists a single quantum measurement that reliably distinguishes between mixed states chosen arbitrarily from disjoint convex sets having large minimal trace distance from one another. We also show how to reduce the probability of error for some classes of quantum refereed games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18, 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babai, L.: Trading group theory for randomness. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 421–429 (1985)

    Google Scholar 

  3. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences 36, 254–276 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: how to remove intractability assumptions. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 113–131 (1988)

    Google Scholar 

  5. Reif, J.: The complexity of two-player games of incomplete information. Journal of Computer and System Sciences 29, 274–301 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feige, U., Shamir, A., Tennenholtz, M.: The noisy oracle problem. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 284–296. Springer, Heidelberg (1990)

    Google Scholar 

  7. Feige, U., Shamir, A.: Multi-oracle interactive protocols with constant space verifiers. Journal of Computer and System Sciences 44, 259–271 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Koller, D., Megiddo, N.: The complexity of two-person zero-sum games in extensive form. Games and Economic Behavior 4, 528–552 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feigenbaum, J., Koller, D., Shor, P.: A game-theoretic classification of interactive complexity classes. In: Proceedings of the 10th Conference on Structure in Complexity Theory, pp. 227–237 (1995)

    Google Scholar 

  10. Feige, U., Kilian, J.: Making games short. In: Proceedings of the Twenty-Ninth annual ACM Symposium on Theory of Computing, pp. 506–516 (1997)

    Google Scholar 

  11. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. Journal of the ACM 39, 859–868 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shamir, A.: IP = PSPACE. Journal of the ACM 39, 869–877 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shen, A.: IP = PSPACE: simplified proof. Journal of the ACM 39, 878–880 (1992)

    Article  MATH  Google Scholar 

  14. Watrous, J.: PSPACE has constant-round quantum interactive proof systems. Theoretical Computer Science 292, 575–588 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kitaev, A., Watrous, J.: Parallelization, amplification, and exponential time simulation of quantum interactive proof system. In: Proceedings of the 32nd ACM Symposium on Theory of Computing, pp. 608–617 (2000)

    Google Scholar 

  16. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 20–30 (1998)

    Google Scholar 

  17. Rosgen, B., Watrous, J.: On the hardness of distinguishing mixed-state quantum computations (2004), arXiv.org e-Print cs.CC/0407056

    Google Scholar 

  18. Bhatia, R.: Matrix Analysis. Springer, Heidelberg (1997)

    Google Scholar 

  19. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  20. Fuchs, C., van de Graaf, J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Transactions on Information Theory 45, 1216–1227 (1999)

    Article  MATH  Google Scholar 

  21. Raz, R.: A parallel repetition theorem. SIAM Journal of Computing 27, 763–803 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. Graduate Studies in Mathematics, vol. 47. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutoski, G., Watrous, J. (2005). Quantum Interactive Proofs with Competing Provers. In: Diekert, V., Durand, B. (eds) STACS 2005. STACS 2005. Lecture Notes in Computer Science, vol 3404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31856-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31856-9_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24998-6

  • Online ISBN: 978-3-540-31856-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics