Abstract
In this paper we present the theoretical developments necessary to extend the existing Context-based Influence Diagram Model for Structured Documents (CID model), in order to improve its retrieval performance and expressiveness. Firstly, we make it more flexible and general by removing the original restrictions on the type of structured documents that CID represents. This extension requires the design of a new algorithm to compute the posterior probabilities of relevance. Another contribution is related to the evaluation of the influence diagram. The computation of the expected utilities in the original CID model was approximated by applying an independence criterion. We present another approximation that does not assume independence, as well as an exact evaluation method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baeza-Yates, R., Ribeiro-Nieto, B.: Modern Information Retrieval. Addison-Wesley, Harlow (1999)
Chiaramella, Y.: Information retrieval and structured documents. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 291–314. Springer, Heidelberg (2001)
Crestani, F., de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: A multi-layered Bayesian network model for structured document retrieval. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 74–86. Springer, Heidelberg (2003)
Crestani, F., Lalmas, M., van Rijsbergen, C.J., Campbell, L.: Is this document relevant?. probably. A survey of probabilistic models in information retrieval. ACM Computing Survey 30(4), 528–552 (1998)
de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: The BNR model: foundations and performance of a Bayesian network-based retrieval model. International Journal of Approximate Reasoning 34, 265–285 (2003)
de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: Using context information in structured document retrieval: An approach using influence diagrams. Information Processing & Management 40(5), 829–847 (2004)
de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: Bayesian networks and influence diagrams: Models and algorithms useful for structured retrieval. DECSAI Technical Report (2004), Available at ftp://decsai.ugr.es/pub/utai/tech_rep/lci
French, S.: Decision Theory. An introduction to the Mathematics of Rationality. Ellis Horwood Limited, Wiley (1986)
Graves, A., Lalmas, M.: Video retrieval using an MPEG-7 based inference network. In: Proc. of the 25th ACM–SIGIR Conference, pp. 339–346 (2002)
INitiative for the Evaluation of XML Retrieval, http://inex.is.informatik.uni-duisburg.de:2004/
Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)
Myaeng, S.H., Jang, D.H., Kim, M.S., Zhoo, Z.C.: A flexible model for retrieval of SGML documents. In: Proc. of the 21st ACM–SIGIR Conference, pp. 138–145 (1998)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan and Kaufmann, San Mateo (1988)
Piwowarski, B., Faure, G.E., Gallinari, P.: Bayesian networks and INEX. In: Proc. of the INEX Workshop, pp. 7–12 (2002)
Shachter, R.: Evaluating influence diagrams. Operations Research 34, 871–882 (1986)
Shachter, R.: Probabilistic inference and influence diagrams. Operations Research 36(5), 527–550 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Campos, L.M., Fernández-Luna, J.M., Huete, J.F. (2005). Improving the Context-Based Influence Diagram Model for Structured Document Retrieval: Removing Topological Restrictions and Adding New Evaluation Methods. In: Losada, D.E., Fernández-Luna, J.M. (eds) Advances in Information Retrieval. ECIR 2005. Lecture Notes in Computer Science, vol 3408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31865-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-31865-1_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25295-5
Online ISBN: 978-3-540-31865-1
eBook Packages: Computer ScienceComputer Science (R0)