Abstract
The growing need for ‘intelligent’ image retrieval systems leads to new architectures combining visual semantics and signal features that rely on highly expressive frameworks while providing fully-automated indexing and retrieval processes. Indeed, addressing the issue of integrating the two main approaches in the image indexing and retrieval literature (i.e. signal and semantic) is a viable solution for achieving significant retrieval quality. This paper presents a multi-facetted framework featuring visual semantics and signal texture descriptions for automatic image retrieval. It relies on an expressive representation formalism handling high-level image descriptions and a full-text query framework in an attempt to operate image indexing and retrieval operations beyond trivial low-level processes and loosely-coupled state-of-the-art systems. At the experimental level, we evaluate the retrieval performance of our system through recall and precision indicators on a test collection of 2500 photographs used in several world-class publications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, J.: Logistic discrimination (1982)
Belkhatir, M., et al.: Integrating Perceptual Signal Features within a Multi-facetted Conceptual Model for Automatic Image Retrieval. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 267–282. Springer, Heidelberg (2004)
Belkhatir, M., et al.: The Outline of an ‘Intelligent’ Image Retrieval Engine. In: ICWI 2004, pp. 1228–1232 (2004)
Bhushan, N., et al.: The Texture Lexicon: Understanding the Categorization of Visual Texture Terms and Their Relationship to Texture Images. Cognitive Science 21(2), 219–246 (1997)
Bradshaw, B.: Semantic based image retrieval: a probabilistic approach. ACM MM, 167–176 (2000)
Carson, C., et al.: Blobworld: A System for Region-Based Image Indexing and Retrieval. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 509–517. Springer, Heidelberg (1999)
Hsu, C.W., et al.: A Practical Guide to Support Vector Classification
Guyader, N., et al.: Towards the introduction of human perception in a natural scene classification system. In: NNSP 2002 (2002)
Jeon, J., et al.: Automatic image annotation and retrieval using cross-media relevance models. In: SIGIR, pp. 119–126 (2003)
Cascia, L., et al.: Combining Textual and Visual Cues for Content-Based Image Retrieval on the World Wide Web. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 24–28 (1998)
Leow, W.K., Lai, S.Y.: Invariant matching of texture for content-based image retrieval. MMM, 53–68 (1997)
Lim, J.H.: Explicit query formulation with visual keywords. ACM MM, 407–412 (2000)
Lim, J.H., et al.: Home Photo Content Modeling for Personalized Event-Based Retrieval. IEEE Multimedia 10(4) (2003)
Lu, Y., et al.: A unified framework for semantics and feature based relevance feedback in image retrieval systems. ACM MM, 31–37 (2000)
Ma, W., Manjunath, B.: NeTra: A toolbox for navigating large image databases. In: ICIC, pp. 568–571 (1997)
Martinet, J.: Un modèle vectoriel relationnel de recherche d’information adapté aux images. PhD Thesis, Joseph Fourier University (2004)
Mechkour, M.: EMIR2: An Extended Model for Image Representation and Retrieval. In: Revell, N., Tjoa, A.M. (eds.) DEXA 1995. LNCS, vol. 978, pp. 395–404. Springer, Heidelberg (1995)
Mojsilovic, A., Rogowitz, B.: Capturing image semantics with low-level descriptors. In: ICIP, pp. 18–21 (2001)
Mulhem, P., Lim, J.H.: Symbolic photograph content-based retrieval. In: CIKM, pp. 94–101 (2002)
Niblack, W., et al.: The QBIC project: Querying images by content using color, texture and shape. SPIE, Storage and Retrieval for Image and Video Databases, 40–48 (1993)
Ounis, I., Pasca, M.: RELIEF: Combining expressiveness and rapidity into a single system. In: SIGIR, pp. 266–274 (1998)
Nie, J.: An Outline of a General Model for Information Retrieval Systems. In: SIGIR, pp. 495–506 (1988)
Pentland, R., et al.: Photobook: Tools for Content-Based Manipulation of Image Databases. In: SPIE, pp. 34–47 (1994)
Rao, A.R., Lohse, G.L.: Towards a texture naming system: Identifying relevant dimensions of texture. Visualization, 220–227 (1993)
Smeulders, A.W.M., et al.: Content-based image retrieval at the end of the early years. IEEE PAMI 22(12), 1349–1380 (2000)
Sowa, J.F.: Conceptual structures: information processing in mind and machine. Addison-Wesley publishing company, Reading (1984)
Town, C.P., Sinclair, D.: CBIR Using Semantic Visual Categories. TR2000-14, AT&T Labs Cambridge (2000)
Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)
Zhou, X.S., Huang, T.S.: Unifying Keywords and Visual Contents in Image Retrieval. IEEE Multimedia 9(2), 23–33 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Belkhatir, M. (2005). Combining Visual Semantics and Texture Characterizations for Precision-Oriented Automatic Image Retrieval. In: Losada, D.E., Fernández-Luna, J.M. (eds) Advances in Information Retrieval. ECIR 2005. Lecture Notes in Computer Science, vol 3408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31865-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-31865-1_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25295-5
Online ISBN: 978-3-540-31865-1
eBook Packages: Computer ScienceComputer Science (R0)