Skip to main content

Non-uniqueness in Reverse Time of Hybrid System Trajectories

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3414))

Included in the following conference series:

Abstract

Under standard Lipschitz conditions, trajectories of systems described by ordinary differential equations are well defined in both forward and reverse time. (The flow map is invertible.) However for hybrid systems, uniqueness of trajectories in forward time does not guarantee flow-map invertibility, allowing non-uniqueness in reverse time. The paper establishes a necessary and sufficient condition that governs invertibility through events. It is shown that this condition is equivalent to requiring reverse-time trajectories to transversally encounter event triggering hypersurfaces. This analysis motivates a homotopy algorithm that traces a one-manifold of initial conditions that give rise to trajectories which all reach a common point at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, Orlando (1974)

    MATH  Google Scholar 

  2. Liberzon, D.: Switching in Systems and Control. Birkhauser, Boston (2003)

    MATH  Google Scholar 

  3. van der Schaft, A., Schumacher, J.: Complementarity modeling of hybrid systems. IEEE Transactions on Automatic Control 43, 483–490 (1998)

    Article  MATH  Google Scholar 

  4. Lootsma, Y., van der Schaft, A., Çamlibel, M.: Uniqueness of solutions of linear relay systems. Automatica 35, 467–478 (1999)

    Article  MATH  Google Scholar 

  5. Pogromsky, A., Heemels, W., Nijmeijer, H.: On solution concepts and well-posedness of linear relay systems. Automatica 39, 2139–2147 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Heemels, W., Çamlibel, M., Schumacher, J.: On the dynamic analysis of piecewise-linear networks. IEEE Transactions on Circuits and Systems-I 49, 315–327 (2002)

    Article  Google Scholar 

  7. Imura, J.I., van der Schaft, A.: Characterization of well-posedness of piecewise-linear systems. IEEE Transactions on Automatic Control 45, 1600–1619 (2000)

    Article  MATH  Google Scholar 

  8. Lygeros, J., Johansson, K., Simić, S., Zhang, J., Sastry, S.: Dynamical properties of hybrid automata. IEEE Transactions on Automatic Control 48, 2–17 (2003)

    Article  Google Scholar 

  9. Errico, R.: What is an adjoint model? Bulletin of the American Meteorological Society 78, 2577–2591 (1997)

    Article  Google Scholar 

  10. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution. SIAM Journal on Scientific Computing 24, 1076–1089 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wardi, Y., Egerstedt, M., Boccadoro, M., Verriest, E.: Optimal control of switching surfaces. In: Proceedings of the 43rd Conference on Decision and Control, Paradise Island, Bahamas, pp. 1854–1859 (2004)

    Google Scholar 

  12. Khalil, H.: Nonlinear Systems, 2nd edn. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  13. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1996)

    MATH  Google Scholar 

  14. Hiskens, I., Pai, M.: Trajectory sensitivity analysis of hybrid systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47, 204–220 (2000)

    Article  Google Scholar 

  15. Donde, V., Hiskens, I.: Shooting methods for locating grazing phenomena in hybrid systems. International Journal of Bifurcation and Chaos (2004) (Submitted)

    Google Scholar 

  16. Kailath, T.: Linear Systems. Prentice-Hall, Upper Saddle River (1980)

    MATH  Google Scholar 

  17. Goodwin, G., Graebe, S., Salgado, M.: Control System Design. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  18. Garcia, C., Zangwill, W.: Pathways to Solutions, Fixed Points and Equilibria. Prentice Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  19. Sauer, P., Pai, M.: Power System Dynamics and Stability. Prentice Hall, Upper Saddle River (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hiskens, I.A. (2005). Non-uniqueness in Reverse Time of Hybrid System Trajectories. In: Morari, M., Thiele, L. (eds) Hybrid Systems: Computation and Control. HSCC 2005. Lecture Notes in Computer Science, vol 3414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31954-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31954-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25108-8

  • Online ISBN: 978-3-540-31954-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics