Abstract
A methodology for safety verification using barrier certificates has been proposed recently. Conditions that must be satisfied by a barrier certificate can be formulated as a convex program, and the feasibility of the program implies system safety, in the sense that there is no trajectory starting from a given set of initial states that reaches a given unsafe region. The dual of this problem, i.e., the reachability problem, concerns proving the existence of a trajectory starting from the initial set that reaches another given set. Using insights from convex duality and the concept of density functions, in this paper we show that reachability can also be verified through convex programming. Several convex programs for verifying safety, reachability, and other properties such as eventuality are formulated. Some examples are provided to illustrate their applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)
Bemporad, A., Torrisi, F.D., Morari, M.: Optimization-based verification and stability characterization of piecewise affine and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 45–58. Springer, Heidelberg (2000)
Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 203–213. Springer, Heidelberg (2000)
Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computations for families of linear vector fields. Journal of Symbolic Computation 32, 231–253 (2001)
Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 63–76. Springer, Heidelberg (2001)
Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)
Alur, R., Dang, T., Ivancic, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003)
Tomlin, C.J., Mitchell, I., Bayen, A.M., Oishi, M.: Computational techniques for the verification of hybrid systems. Proceedings of the IEEE 91, 986–1001 (2003)
Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Transactions on Automatic Control 48, 64–75 (2003)
Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)
Yazarel, H., Pappas, G.: Geometric programming relaxations for linear systems reachability. In: Proceedings of the American Control Conference (2004)
Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)
Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Inc., Upper Saddle River (1996)
Aubin, J.P.: Viability Theory. Birkhäuser, Boston (1991)
Jirstrand, M.: Invariant sets for a class of hybrid systems. In: Proceedings of the IEEE Conference on Decision and Control (1998)
Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–554. Springer, Heidelberg (2004)
Tiwari, A., Khanna, G.: Nonlinear systems: Approximating reach sets. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidelberg (2004)
Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, Pasadena, CA (2000)
Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: A general purpose sum of squares programming solver. In: Proceedings of the IEEE Conference on Decision and Control (2002), Available at: http://www.cds.caltech.edu/sostools , http://www.aut.ee.ethz.ch/~parrilo/sostools
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Prajna, S., Jadbabaie, A., Pappas, G.J.: Stochastic safety verification using barrier certificates. In: Proceedings of the IEEE Conference on Decision and Control (2004)
Glavaski, S., Papachristodoulou, A., Ariyur, K.: Controlled hybrid system safety verification: Advanced life support system testbed (2005) (Submitted)
Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proceedings of the IEEE 88, 971–984 (2000)
Rantzer, A.: A dual to Lyapunov’s stability theorem. Systems and Control Letters 42, 161–168 (2001)
Rantzer, A., Hedlund, S.: Duality between cost and density in optimal control. In: Proceedings of the IEEE Conference on Decision and Control (2003)
Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Publications Inc., Mineola (1998)
Prajna, S., Rantzer, A.: On the necessity of barrier certificates. In: Proceedings of the IFAC World Congress (2005) (to appear)
Rantzer, A., Prajna, S.: On analysis and synthesis of safe control laws. In: Proceedings of the Allerton Conference on Communication, Control, and Computing (2004)
Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prajna, S., Rantzer, A. (2005). Primal–Dual Tests for Safety and Reachability. In: Morari, M., Thiele, L. (eds) Hybrid Systems: Computation and Control. HSCC 2005. Lecture Notes in Computer Science, vol 3414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31954-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-31954-2_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25108-8
Online ISBN: 978-3-540-31954-2
eBook Packages: Computer ScienceComputer Science (R0)