
Theoroidal Maps as Algebraic Simulations�

Narciso Martı́-Oliet1, José Meseguer2, and Miguel Palomino1

1 Departamento de Sistemas Informáticos,
Universidad Complutense de Madrid

2 Computer Science Department,
University of Illinois at Urbana-Champaign

{narciso, miguelpt}@sip.ucm.es
meseguer@cs.uiuc.edu

Abstract. Computational systems are often represented by means of Kripke struc-
tures, and related using simulations. We propose rewriting logic as a flexible and
executable framework in which to formally specify these mathematical models,
and introduce a particular and elegant way of representing simulations in it: theo-
roidal maps. A categorical viewpoint is very natural in the study of these structures
and we show how to organize Kripke structures in categories that afterwards are
lifted to the rewriting logic’s level. We illustrate the use of theoroidal maps with
two applications: predicate abstraction and the study of fairness constraints.

1 Introduction

Formal reasoning about concurrent systems typically involves two levels of specifica-
tion: (1) a system specification level, in which an explicit computational description of
a concurrent system is given; and (2) a property specification level, in which different
safety and liveness properties satisfied by the system are specified. A system specifica-
tion typically determines a mathematical model (or set of models) about which we want
to verify that some properties are satisfied. Frequently used mathematical models in-
clude transition systems, and Kripke structures—i.e., transition systems decorated with
information about satisfaction of atomic predicates. For properties, different temporal
and modal logics can be used; CTL∗ [5] is a common choice, because it contains the
widely used LTL and CTL logics as special cases.

But how can such mathematical models be formally specified? There are many
possibilities. In this paper we specify them by means of rewrite theories. This is a
natural choice, because rewriting logic provides a flexible framework for specifying
a wide range of concurrent systems at a high level [16, 14], yet in an executable way
supported by languages such as Maude in which we can simulate and model check such
systems [7, 8]. Essentially, system states are specified as elements of an initial algebra,
and (parameterized) transitions as rewrite rules. Furthermore, it is then very easy to

� Research supported by ONR Grant N00014-02-1-0715, NSF Grant CCR-0234524, and by
DARPA through Air Force Research Laboratory Contract F30602-02-C-0130; and by the Span-
ish projects MELODIAS TIC 2002-01167 and MIDAS TIC 2003–0100.

J.L. Fiadeiro, P. Mosses, and F. Orejas (Eds.): WADT 2004, LNCS 3423, pp. 126–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:meseguer@cs.uiuc.edu

Theoroidal Maps as Algebraic Simulations 127

equationally specify atomic predicates holding on the states in a theory extension. In this
way, we can associate a Kripke structure K (R,k)Π to a rewrite theory R, a kind of states
k, and atomic propositions Π . Given a CTL∗ formula ϕ , then the issue of whether the
system specification satisfies the property ϕ becomes the question of verifying whether
K (R,k)Π |= ϕ holds.

However, it may be considerably easier to verify such a satisfaction relation using
a different system specification R ′. For example, K (R,k)Π may have infinitely many
states, whereas K (R ′,k)Π may be a finite-state abstraction of R [19], so that we can use
a model checker to verify K (R ′,k)Π |= ϕ . From this we can infer that K (R,k)Π |= ϕ
holds, provided that R and R ′ can be related by an adequate simulation map H : R −→
R ′. This of course suggests a categorical approach, and also exploring an adequate
notion of theory morphism to define such simulations at a logical level. This is the goal
of this paper. Specifically we:

– Define a category with objects Kripke structures and morphisms quite general “stut-
tering simulations,” and show that properties specified by a natural subclass of CTL∗

formulas are reflected by such simulations.
– Show that those CTL∗ formulas, with Kripke structures as models and simulations

as morphisms, form an institution [12].
– Explain theK (R,k)Π construction in detail allowing us to specify Kripke structures

by means of rewrite theories.
– Present a new notion of partial theory morphism which allows a more general and

expressive way of relating theories than with ordinary theory morphisms.
– Define a category with rewrite theories (plus the specification of the kind of states and

the state predicates) as objects, and suitable partial theory morphisms as morphisms,
and show that they define a useful class of simulations between the underlying Kripke
structures, which we call theoroidal simulations.

– Illustrate the usefulness of this notion in several areas, including predicate abstrac-
tion, and reasoning about temporal logic properties under fairness assumptions. Fur-
thermore, theoroidal simulations greatly generalize equational abstractions, which
were already shown to be very useful in [19].

An extended version of this paper with the missing proofs can be found in [15].

2 Prerequisites

2.1 Computational Systems

When reasoning about computational systems, it is usually convenient to abstract from
as many details as possible by means of simple mathematical models that can be used to
reason about them. For a state-based system we can represent its behavior by means of a
transition system, which is a pair A = (A,→A) with A a set of states and →A ⊆ A×A
a binary relation called the transition relation.

A transition system, however, does not include any information about the relevant
properties of the system. In order to reason about such properties it is necessary to add
information about the atomic properties that hold in each state. In what follows, we

128 N. Martı́-Oliet, J. Meseguer, and M. Palomino

assume a fixed set AP of atomic propositions and define a Kripke structure as a triple
A = (A,→A ,LA), where (A,→A) is a transition system with →A a total relation,
and LA : A → P(AP) is a labeling function associating to each state the set of atomic
propositions that hold in it. Note that the transition relation must be total [5]; given an
arbitrary relation →, we write →• for the total relation that extends → by adding a
pair a →• a for each a such that there is no b with a → b. A path in A is a function
π : IN −→ A such that, for each i ∈ IN, π(i) →A π(i+1).

To specify system properties we will use the logic ACTL∗(AP), which is a sublogic
of the branching-time temporal logic CTL∗(AP) (see for example [5–Sect. 3.1]). There
are two types of formulas in CTL∗(AP): state formulas, denoted by State(AP), and path
formulas, denoted by Path(AP). The semantics of the logic, specifying the satisfaction
relations A ,a |= ϕ and A ,π |= ψ for a Kripke structure A , an initial state a ∈ A, a
state formula ϕ , a path π , and a path formula ψ , is defined as usual [5]. ACTL∗(AP)
is the restriction of CTL∗(AP) to those formulas such that their negation-normal forms
(with negations pushed to atoms) do not contain any existential path quantifiers. Some-
times, to avoid introducing existential quantifiers implicitly, it is more convenient to
restrict ourselves to the negation-free fragment ACTL∗\¬(AP) of ACTL∗(AP), defined
as follows:1

state formulas: ϕ = p ∈ AP | � | ⊥ | ϕ ∨ϕ | ϕ ∧ϕ | Aψ
path formulas: ψ = ϕ | ψ ∨ψ | ψ ∧ψ | Xψ | ψUψ | ψRψ | Gψ | Fψ .

We write State\¬(AP) and Path\¬(AP) for the sets of state and path formulas in
ACTL∗\¬(AP), respectively.

2.2 Rewriting Logic

Rewriting logic [16] provides a very flexible framework for the system-level specification
of concurrent systems. It is parameterized by an underlying equational logic, which
we will also use to specify the system’s properties; in this paper we use membership
equational logic [17], whose main features we now review.

A signature in membership equational logic is a triple (K,Σ ,S) (just Σ in the fol-
lowing), with K a set of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature,
and S = {Sk}k∈K a pairwise disjoint K-kinded family of sets of sorts. The kind of a
sort s is denoted by [s]. We write TΣ ,k and TΣ ,k(X) to denote respectively the set of
ground Σ -terms with kind k and of Σ -terms with kind k over variables in X , where
X = {x1 : k1, . . . ,xn : kn} is a set of K-kinded variables. Intuitively, terms with a kind
but without a sort represent undefined or error elements. An atomic formula is either an
equation t = t ′, where t and t ′ are Σ -terms of the same kind, or a membership assertion of
the form t : s, where the term t has kind k and s ∈ Sk. Sentences are conditional formulas
of the form (∀X)A0 if A1 ∧ . . .∧An, where each Ai is either an equation or a membership
assertion, and X is a set of K-kinded variables containing all the variables in the Ai. A
theory is a pair (Σ ,E), where E is a set of sentences in membership equational logic
over the signature Σ . We write (Σ ,E) � φ , or just E � φ if Σ is clear from the context, to

1 X, G, and F stand for the classic next (©), henceforth (�), and eventually (�) LTL operators.

Theoroidal Maps as Algebraic Simulations 129

denote that (Σ ,E) entails the sentence φ in the proof system of membership equational
logic [17]. A theory (Σ ,E) has an initial model TΣ/E whose elements are E-equivalence
classes of terms [t]. Algebras over a signature are defined in a standard manner; we
denote by A f the interpretation of an operator f in the algebra A and by At that of a term
t, and refer to [17] for a detailed presentation of the model theory.

Concurrent systems are axiomatized in rewriting logic by means of rewrite theo-
ries [16] of the form R = (Σ ,E,R). The set of states is described by a membership
equational theory (Σ ,E) as the algebraic data type TΣ/E,k associated to the initial alge-
bra TΣ/E of (Σ ,E) by the choice of a kind k of states in Σ . The system’s transitions are
axiomatized by the conditional rewrite rules R which are of the form

λ : (∀X) t −→ t ′ if
∧

i∈I

pi = qi ∧
∧

j∈J

w j : s j ∧
∧

l∈L

tl −→ t ′l ,

with λ a label, pi = qi and w j : s j atomic formulas in membership equational logic for i ∈ I
and j ∈ J, and for appropriate kinds k and kl , t, t ′ ∈ TΣ ,k(X), and tl , t ′l ∈ TΣ ,kl (X) for l ∈ L.
Under reasonable assumptions about E and R, rewrite theories are executable. Indeed,
there are several rewriting logic language implementations, including CafeOBJ [11],
ELAN [3], and Maude [7, 8]. Rewriting logic then has inference rules to infer all the
possible concurrent computations in a system [16, 4], in the sense that, given two states
[u], [v] ∈ TΣ/E,k, we can reach [v] from [u] by some possibly complex concurrent compu-
tation iff we can prove u −→ v in the logic; we denote this provability by R � u −→ v.
In particular we can easily define the one-step R-rewriting relation, which is a binary
relation →1

R,k on TΣ ,k that holds between terms u,v ∈ TΣ ,k iff there is a proof of u −→ v
in which only one rewrite rule in R is applied to a single subterm.

2.3 Computational Systems in Rewriting Logic

To associate a transition system to a rewrite theory we transfer the one-step rewriting
relation →1

R,k from terms in TΣ ,k to states in TΣ/E,k, by defining [u] →1
R,k [v] iff u′ →1

R,k v′

for some u′ ∈ [u], v′ ∈ [v]. This definition determines a transition system T (R)k =
(TΣ/E,k,(→1

R,k)
•) for each k ∈ K.

In order to associate temporal properties to a rewrite theory R = (Σ ,E,R) we need
to make explicit two things: the intended kind k of states in the signature Σ , and the
relevant state predicates. Once the kind k is fixed, the transitions between states are
given by T (R)k. In general, however, the state predicates need not be part of the system
specification but only of the property specification. We assume that they have been
defined by means of equations D in a protecting theory extension (Σ ′,E ∪D) of (Σ ,E);
that is, the extension is conservative in the sense that the unique Σ -homomorphism
TΣ/E −→ TΣ ′/E∪D|Σ should be bijective at each sort in Σ . We also assume that (Σ ′,E ∪D)
is a protecting theory extension of BOOL, the theory of Boolean values. Furthermore,
we assume that the syntax defining the state predicates consists of a subsignature Π ⊆ Σ ′

of operators, with each p ∈ Π a state predicate symbol that can be parameterized, that
is, p need not be a constant, but can in general be an operator p : s1 . . .sn −→ Prop,
with Prop the kind of propositions. If k is the kind of states, the semantics of the state
predicates Π is defined with the help of an operator |= : k Prop −→ Bool in Σ ′ and
by equations E ∪ D. By definition, given ground terms u1, . . . ,un, we say that the state
predicate p(u1, . . . ,un) holds in the state [t] iff E ∪D � t |= p(u1, . . . ,un) = true.

130 N. Martı́-Oliet, J. Meseguer, and M. Palomino

Then, we associate to a rewrite theory R = (Σ ,E,R) (with a selected kind k of
states and with state predicates Π) a Kripke structure whose atomic propositions are
specified by the set APΠ = {θ(p) | p ∈ Π , θ ground substitution}, where by convention
we use the simplified notation θ(p) to denote the ground term θ(p(x1, . . . ,xn)). We define
K (R,k)Π = (TΣ/E,k,(→1

R,k)
•,LΠ), where LΠ ([t]) = {θ(p) ∈ APΠ | θ(p) holds in [t]}.

3 Relating Systems

So far we have discussed how to mathematically capture the essential characteristics
of computational systems and have proposed rewriting logic as a flexible framework in
which to represent them. But we are not interested in computational systems in isolation.
We would like to be able to study, for example, if a particular system is an abstraction, or
an implementation, of another one. To do that, the concept of simulation is introduced.

3.1 Stuttering Simulations

Classically, a simulation H : A −→ B of Kripke structures relates states that satisfy the
same atomic propositions in such a way that to every path in A corresponds a path in
B. A key fact is that then every ACTL∗ formula that holds in B is also true in A .

Our aim is to generalize the notion of simulation to give it a wider applicability. This
generalization should satisfy the same two key properties of basic simulations: (i) be
compositional, and (ii) reflect interesting properties. We achieve this goal by slightly
restricting the logic; on the one hand, by forbidding negations (no real expressive power
is lost) the condition that related states have to satisfy the same properties can be relaxed,
and on the other, by forbidding the next operator X (see Section 3.2), we can allow paths
to be simulated up to stuttering (which is what one really cares about most of the time).

Formally, for A = (A,→A) and B = (B,→B) transition systems and H ⊆ A × B
a relation, we say that a path ρ in B H-matches a path π in A if there are strictly
increasing functions α,β : IN −→ IN with α(0) = β (0) = 0 such that, for all i, j,k ∈ IN,
if α(i) ≤ j < α(i+1) and β (i) ≤ k < β (i+1), it holds that π(j)Hρ(k). For example, the
following diagram shows the beginning of two matching paths, where related elements
are joined by dashed lines and α(0) = β (0) = 0, α(1) = 2, β (1) = 3, α(2) = 5.

π • ��

�
� • ��

�
� • �� • ��

�
� • �� · · ·

ρ • ��

�
�

�
� • ��

�
�

�
�

• ��

�
�

�
�

� � � � � � � • ��

�
�

�
�

�
�

�
� • �� · · ·

Definition 1. Given transition systems A and B, a stuttering simulation of transition
systems H : A −→ B is a binary relation H ⊆ A × B such that if aHb, then for each
path π in A starting at a there is a path ρ in B starting at b that H-matches π . If H is
a function we say that H is a stuttering map of transition systems. If both H and H−1

are stuttering simulations, then we call H a stuttering bisimulation.
Given Kripke structures A = (A,→A ,LA) and B = (B,→B,LB) over AP, a stut-

tering AP-simulation H : A −→ B is a stuttering simulation of transition systems
H : (A,→A) −→ (B,→B) such that if aHb then LB(b) ⊆ LA (a). If H is a function
we call H a stuttering AP-map. We call H a stuttering AP-bisimulation if H and H−1

are stuttering AP-simulations. We call H strict if aHb implies LB(b) = LA (a).

Theoroidal Maps as Algebraic Simulations 131

3.2 The Temporal Logic Institution

Simulations, as defined above, compose, and it is immediate to check that the identity
function 1A : A −→ A is a simulation of transition systems and of Kripke structures.
Therefore, transition systems together with their simulations define a category STSys,
and similarly, for each set AP of atomic propositions there is a category KSSimAP with
a subcategory KSMapAP of stuttering AP-maps. Note that if H is an isomorphism in
KSSimAP then it must be a map and a bisimulation. Note, finally, that the mapping
(A,→A ,LA) �→ (A,→A) extends to a forgetful functor TS : KSSimAP −→ STSys.

Although the main goal of this paper is the study of simulations and their representa-
tion in rewriting logic, we believe that a categorical viewpoint is indeed the most natural
to understand these generalized simulations and hence consider worthwhile to devote
the rest of this section to present some ideas in that context. In what follows we show
how these categories can be neatly organized in an institution [12] for the logic ACTL∗.
Other institutions for temporal logics are discussed in [1], but their notions of signature
morphism and of simulation (which roughly corresponds to our notion of bisimulation
map) are more limited. As a side effect, we will also construct a Grothendieck cate-
gory [20] which will allow us to relate Kripke structures over different sets of atomic
propositions, further generalizing the notion of simulation.

Let us first define the category of signatures. A simple option would be to choose
sets of atomic propositions as objects and functions between them as arrows, but we are
aiming for the most general notion that still reflects satisfaction of suitable formulas.2 For
that, let State\{¬,X} : Set −→ Set be the functor mapping a set AP to State\{¬,X}(AP),
the state formulas in ACTL∗\¬(AP) that do not contain the next operator X, and a
function α : AP −→ AP′ to its homomorphic extension

α : State\{¬,X}(AP) −→ State\{¬,X}(AP′) .

Then, the triple 〈State\{¬,X},η ,µ〉 is a monad [2], where η : IdSet ⇒ State\{¬,X} and
µ : State\{¬,X} ◦ State\{¬,X} ⇒ State\{¬,X} are natural transformations such that
ηAP(p) = p and µ “unwraps” a formula into its basic atomic propositions. Our category
of signatures will be SetState\{¬,X}, the Kleisli category of the monad; its objects are just
sets, and the morphisms AP −→ AP′ are functions α : AP −→ State\{¬,X}(AP′).

We also need a notion of a reduct of a Kripke structure, inspired by that of the
reduct of an algebra. Given a function α : AP −→ State(AP′) and a Kripke structure
A = (A,→A , LA) over AP′, we define the reduct Kripke structure A |α = (A,→A ,
LA |α) over AP, with labeling function LA |α (a) = {p ∈ AP | A ,a |= α(p)}. We can now
define the desired institution.

Definition 2. The institution of Kripke structures, IK = (SignK,senK,ModK, |=), is
given by:

2 The simpler category, however, gives rise to a semiexact institution, which is not true for the
one presented in the text; see [15] for more details.

132 N. Martı́-Oliet, J. Meseguer, and M. Palomino

– SignK = SetState\{¬,X}.
– senK : SetState\{¬,X} −→ Set is the functor mapping a set AP to State\{¬,X}(AP),

and a function α : AP −→ State\{¬,X}(AP′) to its homomorphic extension α :
State\{¬,X}(AP) −→ State\{¬,X}(AP′).

– ModK : SetState\{¬,X} −→ Catop is given by ModK(AP) = KSSimAP and, for α :
AP −→ AP′ in SetState\{¬,X}, ModK(α)(A) = A |α and ModK(α)(H) = H.

– The satisfaction relation is defined as A |= ϕ iff A ,a |= ϕ for all a ∈ A.

Proposition 1. IK is an institution.

Now, having defined the indexed category ModK allows us to construct the “flat-
tened” category of Kripke structures over arbitrary sets of atomic propositions. Let us
denote with KSSim the Grothendieck category [20] corresponding to ModK; spelling
out the definition, this gives rise to our most general notion of simulation. A stuttering
simulation (α,H) : (AP,A) −→ (AP′,B) in KSSim between a Kripke structure A over
AP and another B over AP′ consists of a function α : AP −→ State\{¬,X}(AP′) together
with an AP-simulation H : A −→ B|α . We say that (α,H) reflects a state formula ϕ
if whenever aHb and B,b |= α(ϕ), then A ,a |= ϕ . Then, not only these generalized
simulations still compose but they also reflect suitable ACTL∗ formulas.

Theorem 1. Stuttering simulations always reflect satisfaction of ACTL∗\{¬,X} for-
mulas. In addition, strict stuttering simulations also reflect satisfaction of ACTL∗ \X
formulas.

Note that by using different types of morphisms between Kripke structures and
choosing as sentences those temporal formulas reflected by them, we can get different
institutions and Grothendieck categories. For example, if we forget about stuttering and
only allow simulations that preserve one-step transitions, and define the category of
signatures through a functor State : Set −→ Set mapping AP to State(AP), we get the
institution of Kripke structures and classic simulations.

4 Theoroidal Maps

We have already noted that, in order to reason about computational systems, these can
be abstractly described by means of transition systems and Kripke structures, and that
rewriting logic can be used to specify both kinds of structures, as explained in the previous
sections. Our goal now is to study how to relate different rewrite theories and how to lift
to this specification level all the previous results about simulations of Kripke structures.
For this, we consider four increasingly more general ways of defining simulations for
rewrite theories specifying a concurrent system:

1. The easiest way of defining a simulation map for a rewrite theory (Σ ,E,R) is by
means of an equational abstraction [19], which consists in simply adding new
equations, say E ′, to get a quotient system specified by (Σ ,E ∪E ′,R).

2. The previous method can be generalized by considering, instead of just theory inclu-
sions (Σ ,E) ⊆ (Σ ,E ∪E ′), arbitrary theory interpretations H : (Σ ,E) −→ (Σ ′,E ′)
allowing arbitrary transformations on the data representation of states.

Theoroidal Maps as Algebraic Simulations 133

3. A third alternative consists in defining a simulation map between rewrite theories
R and R ′ directly at the level of their associated Kripke structures by means of
equationally defined functions.

4. Finally, the most general case is obtained by defining arbitrary simulations between
rewrite theories R and R ′ by means of rewrite relations.

For each of the increasingly more general ways above of defining simulations, there
are of course associated correctness conditions that must be verified. For equational
abstractions they are considered in detail in [19]. Here we study the second case, that
we call theoroidal maps; although not so general as the last two, there are still many
interesting examples that can be explained with them, as we illustrate in Section 5. The
remaining cases 3–4 will be treated elsewhere.

4.1 Generalized Theory Morphisms

The first thing to do is to make precise the meaning of theory interpretation. The idea is
to use the standard concepts of signature and theory morphism. However, as we shall see
in some of the examples below, the usual definition of signature morphism is sometimes
not expressive enough. For this reason we introduce the following generalization of the
concept of signature morphism in which a kind or an operator can be erased.

Definition 3. Given two membership equational signatures Σ = (K,Σ ,S) and Σ ′ =
(K′,Σ ′,S′), a generalized signature morphism H : Σ −→ Σ ′ is specified by:

– partial functions H : K −→ K′ and H : S −→ S′ such that, for all sorts s ∈ Σ , if H(s)
is defined so is H([s]) and H([s]) = [H(s)].

– a partial function H assigning, to each f ∈ Σk1...kn,k such that H(k) is defined, a
Σ ′-term H(f) of kind H(k) such that vars(H(f)) ⊆ {xi1 : H(ki1), . . . , xim : H(kim)},
where ki1 , . . . ,kim is the (possibly empty) subsequence of k1, . . . ,kn determined by
those ki such that H(ki) is defined. Otherwise, if H(k) is undefined, so is H(f).

All standard constructions and results about signature morphisms apply to these
generalized ones as well. Given H : Σ −→ Σ ′ and a Σ ′-algebra A, its reduct UH(A) over
Σ is defined by:

– For each kind k, UH(A)k = AH(k) if H(k) is defined; otherwise UH(A)k = {∗}.
– For each sort s, UH(A)s = AH(s) if H(s) is defined; otherwise UH(A)s = {∗}.
– For each operator f : k1 . . .kn −→ k, if ki1 , . . . ,kim is the subsequence of those kinds

in k1, . . . ,kn for which H is defined,

UH(A) f (a1, . . . ,an) = AH(f)(ai1 , . . . ,aim) ;

otherwise,
UH(A) f (a1, . . . ,an) = ∗ .

Given generalized signature morphisms F : Σ −→ Σ ′ and G : Σ ′ −→ Σ ′′, their com-
position G ◦ F is defined for a kind k only if both F(k) and G(F(k)) are defined, and
then it is (G◦F)(k) = G(F(k)); analogously for a sort s and an operator f .

134 N. Martı́-Oliet, J. Meseguer, and M. Palomino

Generalized signature morphisms can also be extended homomorphically to terms,
but note that for t of kind k, if H(k) is not defined then H(t) is not defined either. This
translation extends to formulas in the expected way, where by convention H(t = t ′) =
H(t : s) = � if H is not defined for the kind of t (which is the same as that of t ′ and s).
Our desired general notion of “theory interpretation” is then captured by the following:

Definition 4. Given two membership equational theories (Σ ,E) and (Σ ′,E ′), a gener-
alized theory morphism (resp. a generalized theory morphism with initial semantics)
H : (Σ ,E) −→ (Σ ′,E ′) is a generalized signature morphism H : Σ −→ Σ ′ such that for
each ϕ ∈ E, E ′ |= H(ϕ) (resp. TΣ ′/E ′ |= H(ϕ)).

Note that, since TΣ ′/E ′ |= E ′, each generalized theory morphism is a fortiori a general-
ized theory morphism with initial semantics, but not conversely. For example, if (Σ ,E) is
the theory with one sort, Nat, a binary operator +, and the equation (∀{x,y : Nat}) x+y =
y + x, (Σ ′,E ′) is the usual equational definition of addition in Peano arithmetic, and H
is the obvious signature inclusion, then we have TΣ ′/E ′ |= (∀{x,y : Nat}) x + y = y + x,
but E ′ �|= (∀{x,y : Nat}) x+ y = y+ x.

Again, generalized theory morphisms compose and together with membership equa-
tional theories give rise to a category GThMEL.

The new feature of generalized signature morphisms, which is inherited by gener-
alized theory morphisms, is that kinds and operators can be removed. This could have
been “implemented” using the standard notion of theory morphism in the following
alternative manner:

Proposition 2. A generalized theory morphism H : T −→ T ′ is the same thing as an
ordinary theory morphism H : T −→ T ′ ⊕ONE, where ⊕ denotes coproduct of theories,
and ONE is a theory with a single kind [One] and sort One, a constant ∗ of that kind,
and the equation (∀{x : [One]})x = ∗.

Proof (sketch). Leaving a kind or sort undefined in a generalized signature morphism
corresponds respectively to mapping it to [One] or One in T ′ ⊕ ONE, while leaving an
operator undefined corresponds to mapping it to the term ∗. ��

Note that there is an equivalence of categories between the models of T ′ and those of
T ′ ⊕ONE, because, even though we have introduced a new kind [One], all its elements
are collapsed by the equation (∀{x : [One]})x = ∗ to the constant ∗ and can play no
distinguished role.

Example. A special case of generalized theory morphisms are the projection func-
tions from n-tuples to (n− k)-tuples. Consider a theory 3-TUPLE for triples with kinds
3-Tuple, Elt@x, Elt@y, Elt@z, an operator 〈 , , 〉 : Elt@x Elt@y Elt@z −→ 3-Tuple,
projection operators p1, p2, and p3, and the obvious equations. Similarly, the theory 2-
TUPLE has kinds 2-Tuple, Elt@x, Elt@z, an operator 〈 , 〉 : Elt@x Elt@z −→ 2-Tuple,
corresponding projection operators p1 and p2, and the equations for pairing. Project-
ing from a triple to a pair by projecting out the second component can be represented
by the generalized theory morphism H : 3-TUPLE −→ 2-TUPLE mapping the kinds
Elt@x and Elt@z to themselves, 3-Tuple to 2-Tuple, and the operator 〈 , , 〉 to the
term 〈x1 : Elt@x,x3 : Elt@z〉; the image of the kind Elt@y and the operator p2 are left
undefined.

Theoroidal Maps as Algebraic Simulations 135

4.2 Simulation Maps as Generalized Theory Morphisms

To be able to arrange rewrite theories specifying Kripke structures in a categorical way
we need to consider a theory BOOL|= extending BOOL with two new kinds, State and
Prop, and a new operator |= : State Prop −→ Bool.

We now have all the ingredients needed to define a category SRWThHom|= in which
stuttering maps are specified by theory interpretations. Objects in SRWThHom|= are
triples (R,(Σ ′,E ∪ D),J) specifying, respectively, the transition relation, the atomic
propositions, and the kind of the states. More precisely:

1. R = (Σ ,E,R) is a rewrite theory specifying the transition system.
2. (Σ ,E) ⊆ (Σ ′,E ∪D) is a protecting theory extension, containing and protecting also

the theory BOOL of Booleans, that defines the atomic propositions satisfied by the
states. We define Π ⊆ Σ ′ as the subsignature of operators of coarity Prop.

3. J : BOOL|= −→ (Σ ′,E ∪D) is a membership equational theory morphism [17] that
selects the distinguished kind of states J(State), and such that: (i) it is the identity
when restricted to BOOL, (ii) J(Prop) = Prop, and (iii) J(|= : State Prop →
Bool) = |= : J(State) Prop → Bool.

Then, a morphism

H : (R1,(Σ ′
1,E1 ∪D1),J1) −→ (R2,(Σ ′

2,E2 ∪D2),J2)

in SRWThHom|= is a generalized signature morphism H : Σ1 ∪ Π1 −→ Σ2 ∪ Π2 such
that:

1. H ◦J1 = J2 (so that BOOL is preserved and states in R1 are mapped to states in R2).
2. H : (Σ1,E1) −→ (Σ2,E2) is a generalized morphism of membership equational the-

ories with initial semantics, so that we have a unique Σ1-homomorphism

ηH : TΣ1/E1
−→ UH(TΣ2/E2

) : [t] �→ [H(t)] .

3. (Preservation of transitions.) ηH
J1(State) : T (R1)J1(State) −→ T (R2)J2(State), the com-

ponent corresponding to the kind J1(State) in ηH mapping [t] to [H(t)], is a stuttering
map of transition systems.

4. (Preservation of predicates.) For each t ∈ TΣ1,J1(State) and state predicate p(u1, . . . ,un):

E2 ∪D2 � H(t) |= H(p(u1, . . . ,un)) = true =⇒ E1 ∪D1 � t |= p(u1, . . . ,un) = true .

We can analogously construct a subcategory SRWThHomstr
|= of strict maps. The

definition is exactly the same except for item (4), where the implication must actually
be an equivalence.

That H so constrained indeed gives rise to a map of Kripke structures is shown
in Proposition 3 below. Let us define a functor K : SRWThHom|= −→ KSMap as
follows:

136 N. Martı́-Oliet, J. Meseguer, and M. Palomino

– for objects, K (R,(Σ ′,E ∪D),J) = K (R,J(State))Π ;
– for morphisms H : (R1,(Σ ′

1,E1 ∪ D1),J1) −→ (R2,(Σ ′
2,E2 ∪ D2),J2), K (H) =

(H|Π1 ,η
H
J1(State)), where H|Π1 is the restriction of H to the state predicates Π1.

Proposition 3. With the above definitions, K : SRWThHom|= −→ KSMap is a func-
tor with restriction K : SRWThHomstr

|= −→ KSMapstr.

Proof. K is well-defined on objects, and it is immediate to see that it preserves identi-
ties and composition of morphisms; the only thing we need to check is that, for all H,
K (H) is indeed a map of Kripke structures. Let then H : (R1,(Σ ′

1,E1 ∪ D1),J1) −→
(R2,(Σ ′

2,E2 ∪D2),J2) be a morphism in SRWThHom|=. By item (3) above, ηH
J1(State) :

T (R1)J1(State) −→ T (R2)J2(State) is a stuttering map of transition systems. To show
preservation of predicates, let p(u1, . . . ,un) ∈ LK (R2,J2(State))Π2

|H|Π1
([H(t)]). By defini-

tion of the reduct of a Kripke structure, K (R2,J2(State))Π2 , [H(t)] |= H(p(u1, . . . ,un))
which, by definition of K (R2,J2(State))Π2 and condition (4) in the definition of mor-
phisms in SRWThHom|=, implies that p(u1, . . . ,un) ∈ LK (R1,J1(State))Π1

([t]), as re-

quired. It is clear that if H belongs to SRWThHomstr
|= the converse is also true and

K (H) is a strict map. ��

An important consequence of this result and Theorem 1 is the following:

Theorem 2. Given a morphism H : (R1,(Σ ′
1,E1 ∪ D1),J1) −→ (R2,(Σ ′

2,E2 ∪ D2),J2)
in SRWThHom|= or SRWThHomstr

|= , and a formula ϕ in ACTL∗\{¬,X}(Π1) or
ACTL∗ \X(Π1) respectively, if H(ϕ) holds in K (R2,(Σ ′

2,E2 ∪ D2),J2) then ϕ holds
in K (R1,(Σ ′

1,E1 ∪D1),J1).

Similar constructions can be carried out when simulations are represented by means
of equationally defined functions or rewrite relations (recall the introduction to this sec-
tion), resulting in categories SRWTh|= and SRelRWTh|=. Then, the lifting of Kripke
structures to the framework of rewriting logic can be represented graphically with the fol-
lowing commutative diagram. In it, the horizontal arrows between categories associated
to Kripke structures are inclusions, and those that map to categories associated to tran-
sition systems are the expected forgetful functors. (SRWTh is constructed analogously
to SRWThHom|=, but taking only the transitions into consideration.)

SRWThHom|= ��

K

��

SRWTh|= ��

K

��

SRelRWTh|= ��

K

��

SRWTh

T

��
KSMap �� KSMap �� KSSim �� STSys

5 Applications

5.1 Predicate Abstraction

Simulations are useful to define abstractions that allow studying the properties of a com-
plex system using a simpler one. A particular instance of the methodology of abstraction

Theoroidal Maps as Algebraic Simulations 137

is predicate abstraction [13, 9]. Under this approach, the abstract domain is a Boolean
algebra over a set of assertions and the abstraction function, typically as part of a Galois
connection, is symbolically constructed as the conjunction of all expressions satisfying
a certain condition, which is typically discharged using theorem proving. We now show
how predicate abstractions can be understood as an instance of our notion of theoroidal
map.

Let us first focus on the transition relation. Given a computational system, a set
φ1, . . . ,φn of predicates over the states determines an abstraction function mapping a
state S to the Boolean tuple 〈φ1(S), . . . ,φn(S)〉. Let us assume that the transitions of the
system are specified by a rewrite theory R = (Σ ,E,R) whose kind of states is State.
Then, if R is State-encapsulated with constructor st : k1 . . .km −→ State (that is, among
all operators in Σ the kind State only appears in the operator st, and only as its coarity),
the above predicate abstraction can be represented in rewriting logic by means of a
rewrite theory RA = (ΣA,EA,RA) where:

– ΣA contains Σ and the signature of BOOL, together with a new kind BState, a new
operator bst : Booln −→ BState and, for each predicate φi, 1 ≤ i ≤ n, an operator
pi : State −→ Bool to represent it. We then have a signature morphism H : Σ −→ ΣA

that maps the kind State to BState, the constructor st to the term

bst(p1(st(x1, . . . ,xm)), . . . , pn(st(x1, . . . ,xm))),

and is the identity everywhere else.
– EA contains H(E) and the equations in BOOL, together with equations for p1, . . . , pn

specifying the predicates φ1, . . . ,φn.
– RA = H(R).

By construction, then, H : (Σ ,E) −→ (ΣA,EA) is a theory morphism such that
t →1

R,State t ′ implies H(t) →1
RA,BState H(t ′), thus preserving the transition relation.

We can now turn our attention to the preservation of properties. Graphically, the
relationship between the different theories involved is depicted in the following diagram,

(Σ ,E)

H
��

� � �� (Σ ′,E ∪D)

��
(ΣA,EA) � � �� (Σ ′

A,EA ∪DA)

where (Σ ′,E ∪ D) is the equational theory specifying the properties of the given sys-
tem, and (Σ ′

A,EA ∪ DA) is the theory we have to associate to RA defining its atomic
propositions.

The syntax for the state predicates q (that we assume are constants) in the original
system is given in a subsignature Π of Σ ′. It is usually the case that for each of these q
one of the predicates φi in the basis defining the abstraction has the meaning “the state
S satisfies q.” Let q1, . . . ,qk be the state predicates in Π . We assume k ≤ n, and that
each q j, 1 ≤ j ≤ k, corresponds to the predicate φ j in the basis of the abstraction (but in
general we may have n > k, with predicates φk+1, . . . ,φn not having a counterpart in Π).
That is, for a φ j with a corresponding q j in Π , its specification in EA through p j(S) is

138 N. Martı́-Oliet, J. Meseguer, and M. Palomino

thus essentially the same (modulo renaming) as that of S |= q j in D, so that E ∪D � (S |=
q j) = true ⇐⇒ EA � p j(S) = true. Then, for the abstraction we use the same set of
state predicates Π and they are specified in a theory extension (ΣA,EA) ⊆ (Σ ′

A,EA ∪DA),
with Σ ′

A = ΣA ∪Σ ′ and DA containing, for each q j in Π with associated φ j, the equation

(∀{x1, . . . ,xn})(bst(x1, . . . ,x j, . . . ,xn) |= q j) = x j .

Let us extend H to Σ ∪ Π by mapping each state predicate to itself. Thus, for all
ground terms t of kind State and state predicates q j, if EA ∪ DA � (H(t) |= q j) = true
then, by the equation defining q j in EA ∪ DA and since H(t) = bst(p1(t), . . . , pn(t)),
we have EA ∪ DA � p j(t) = true and even EA � p j(t) = true because p j is completely
specified in EA. And hence, due to the relation between the equations defining p j(S) and
S |= q j, E ∪D � (t |= q j) = true holds and preservation of predicates is guaranteed.

Finally, we can put all the pieces together and summarize the previous discussion as
follows.

Theorem 3. Let a concurrent system be specified as an object (R,(Σ ′,E ∪ D),J) of
SRWThHom|=, where R is J(State)-encapsulated, and let φ1, . . . ,φn be a set of predi-
cates over the kind J(State), with each state predicate q j ∈ Π (we assume that all such
q j are constants) corresponding to a φ j, 1 ≤ j ≤ k. The result of applying predicate
abstraction is the system given by (RA,(Σ ′

A,EA ∪DA),JA), where (Σ ′
A,EA ∪DA) and RA

are defined as explained above, and where JA(State) = BState. Then, with these defini-
tions, H : (R,(Σ ′,E ∪D),J) −→ (RA,(Σ ′

A,EA ∪DA),JA) is an arrow in SRWThHom|=,
where H is the signature morphism Σ ∪Π −→ Σ ′

A ∪Π .

Let us illustrate these ideas by outlining how they apply to the bakery protocol.
This is an infinite state protocol that achieves mutual exclusion between processes by
dispensing a number to each process and serving them in sequential order according to
the number they hold. For the case of two processes, the transitions can be specified in
rewriting logic by a theory R = (Σ ,E,R) such that:

– (Σ ,E) contains declarations and equations specifying the natural numbers; in par-
ticular, the “equal to” (==) and “less than” (<) predicates are specified.

– States are constructed by an operator st : Mode Nat Mode Nat -> State. The
first two components describe the status of the first process (the mode it is currently
in, which can be sleep, wait, or crit, and its priority as given by the number
according to which it will be served), and the last two components the status of the
second process.

– R consists of eight rewrite rules, four for each process, describing all possible tran-
sitions. Among them, for example,

rl st(M, X, sleep, Y) => st(M, X, wait, s(X)) .

to represent that the second process can “awake” and move to wait mode, and

crl st(M, X, wait, Y) => st(M, X, crit, Y) if Y < X .

allowing the second process to move to the critical section if its counter is less than
that of the first one.

Theoroidal Maps as Algebraic Simulations 139

The properties are defined in a theory extension (Σ ,E) ⊆ (Σ ′,E ∪ D) that simply adds
four constants 1wait, 1crit, 2wait, and 2crit to Σ to characterize when the first and
second processes are in wait or crit mode, together with the obvious equations:

eq (st(wait, X, N, Y) |= 1wait) = true .
eq (st(sleep, X, N, Y) |= 1wait) = false .
eq (st(crit, X, N, Y) |= 1wait) = false .
...

For this protocol, we might be interested in verifying the following safety property:
AG¬(1crit∧2crit).

We will use the following set of seven predicates to define the predicate abstraction:

φ1(st(M, X, N, Y)) ⇐⇒ M == wait φ5(st(M, X, N, Y)) ⇐⇒ X == 0
φ2(st(M, X, N, Y)) ⇐⇒ M == crit φ6(st(M, X, N, Y)) ⇐⇒ Y == 0
φ3(st(M, X, N, Y)) ⇐⇒ N == wait φ7(st(M, X, N, Y)) ⇐⇒ X < Y
φ4(st(M, X, N, Y)) ⇐⇒ N == crit

Intuitively, we only care whether the processes are in wait or crit mode, whether their
counters are equal to zero, and which counter is greater.

Note that the state predicates in the signature correspond to predicates 1–4. In terms
of the notation used above, q1 would be 1wait and it would be associated to φ1, q2

would be 1crit and would be associated to φ2, and q3 and q4 would be 2wait and
2crit, associated to φ3 and φ4. Now, the abstract rewrite theory RA = (ΣA,EA,RA) is
constructed by adding to R:

– Operatorsp1 : State -> Bool, . . . ,p7 : State -> Bool, together with a new
kind BState and the constructor for abstract states

op bst : Bool Bool Bool Bool Bool Bool Bool -> BState .

This determines the signature morphism H, that maps the constructor operator st
to the term

bst(p1(st(M, X, N, Y)),...,p7(st(M, X, N, Y)))

– Equations associated to pi specifying φi for i = 1, . . . ,7. Since predicates φ1, . . . ,φ4

correspond to the atomic propositions, their defining equations are “the same”:

eq p1(st(wait, X, N, Y)) = true .
eq p1(st(sleep, X, N, Y)) = false .
eq p1(st(crit, X, N, Y)) = false .
eq p2(st(wait, X, N, Y)) = false .
eq p2(st(sleep, X, N, Y)) = false .
eq p2(st(crit, X, N, Y)) = true .
...

The three remaining equations are also immediate:

eq p5(st(M, X, N, Y)) = (X == 0) .
eq p6(st(M, X, N, Y)) = (Y == 0) .
eq p7(st(M, X, N, Y)) = (Y < X) .

140 N. Martı́-Oliet, J. Meseguer, and M. Palomino

– The translation of the rules in R by the signature morphism H. In particular, the two
rules introduced before become:

rl bst(p1(st(M, X, sleep, Y)), ..., p7(st(M, X, sleep, Y))) =>
bst(p1(st(M, X, wait, Y)), ..., p7(st(M, X, wait, s(X)))) .

crl bst(p1(st(M, X, wait, Y)), ..., p7(st(M, X, wait, Y))) =>
bst(p1(st(M, X, crit, Y)), ..., p7(st(M, X, crit, Y)))
if Y < X .

Finally, we have to write the equations in DA defining the atomic propositions in the
abstract model, which is straightforward.

eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 1wait) = B1 .
eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 1crit) = B2 .
eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 2wait) = B3 .
eq (bst(B1, B2, B3, B4, B5, B6, B7) |= 2crit) = B4 .

By construction, this model is a predicate abstraction with respect to the basis
φ1, . . . ,φ7 of the bakery protocol, in which the desired property can be model checked.

It is worth pointing out that this algebraic method of defining predicate abstractions
cannot be expressed within the framework of [19], because the specification of the
predicates φi requires, in general, to introduce auxiliary operators and thus a different
signature ΣA �= Σ . Also, the resulting rewrite theory is not executable in general. This
means that it cannot be directly used in a tool like the Maude model checker [10].
Predicate abstraction can be considered as a particular instance of our framework of
algebraic simulations from a conceptual or foundational point of view, which is still quite
useful because it provides a justification for the method within our framework. Current
approaches to predicate abstraction do not work directly with the minimal transition
relation (described in our account by RA). Instead, they compute a safe approximation
of RA by discharging some proof obligations. We are at present developing methods to
compute such approximation within our framework using Maude’s inductive theorem
prover (ITP) [6] as the deductive engine to discharge such proof obligations.

5.2 A Fairness Example

We illustrate the use of theoroidal (bi)simulation maps to reason about fairness. The
treatment can be made for very general classes of rewrite theories, and for quite flexible
notions of fairness [18]. Here, we limit ourselves to illustrating some of the key ideas,
including the use of theoroidal maps, by means of a simple communication protocol
example. Note also that the same idea can be used for the representation and study of
labeled transition systems in rewriting logic.

Consider a system consisting of a sender, a channel, and a receiver. The goal is to
send a multiset of numbers (in arbitrary order) from the sender to the receiver through
the channel. The channel can at any time contain several of these numbers. Besides the
normal send and receive actions, the channel may stall an arbitrary number of times in
sending some data. We can model the states of such a system by means of the signature

snd,ch,rcv : Nat −→ Conf
null :−→ Conf

: Conf Conf −→ Conf

Theoroidal Maps as Algebraic Simulations 141

where the operator (juxtaposition notation) denotes multiset union and satisfies the
equations of associativity and commutativity, and has null as its identity element. For
example, the term

snd(7)snd(3)snd(7)ch(2)ch(3)rcv(1)rcv(9)

describes a state in which 3 and two copies of 7 have not yet been sent, 2 and another
copy of 3 are in the channel, and 1 and 9 have been received. The behavior of the system
is specified by the following three rewrite rules:

send : snd(n) −→ ch(n)
stall : ch(n) −→ ch(n)

receive : ch(n) −→ rcv(n)

where n is a variable of sort Nat. Is this system terminating? Not without extra assump-
tions, since the stall rule could be applied forever. To make it terminating it is enough
to assume the following “weak fairness” property about the receive rule, described by
the formula

wf-receive = FGenabled-receive → GF taken-receive ;

that is, if eventually the receive rule becomes continuously enabled in a path, then it
is taken infinitely often. Specifying the enabled-receive predicate equationally is quite
easy (we just need to have some value in the channel) but the specification of the taken-
receive predicate is more elusive. For example, does the taken-receive predicate hold
of the state described above? We don’t know; maybe the last action was receiving the
value 1, in which case it would hold, but it could instead have been stalling on 3, or
sending 2, and then it wouldn’t. Here is where a theory transformation corresponding to
a theoroidal map, and allowing us to define a bisimilar system where the taken-receive
predicate can be defined, comes in. The new theory extends the above signature with the
following new sorts and operators:

send,stall,receive,∗ :−→ Label
{ | } : Conf Label −→ State

that is, a state now consists of a configuration-label pair, indicating the last rule that was
applied. Since initially no rule has been applied, we add the label ∗ for all initial states.
The rules of the transformed theory are now:

send : {conf snd(n) | l} −→ {conf ch(n) | send}
stall : {conf ch(n) | l} −→ {conf ch(n) | stall}

receive : {conf ch(n) | l} −→ {conf rcv(n) | receive}

where conf is a variable of sort Conf, and l a variable of sort Label. We can then define
the predicates enabled-send, enabled-receive, and taken-receive by the equations

({conf snd(n) | l} |= enabled-send) = true
({conf ch(n) | l} |= enabled-receive) = true
({conf | receive} |= taken-receive) = true

142 N. Martı́-Oliet, J. Meseguer, and M. Palomino

Then the fair termination property can be defined by the following formula, which
indeed holds in the Kripke structure associated to this transformed theory for any initial
state:

A(wf-receive → F(¬enabled-send∧¬enabled-receive)) .

Let (ΣComm,EComm) denote the underlying equational theory of our original rewrite
theory, and let (ΣLComm,EComm) denote that of the transformed theory (it has the same
equations EComm). We can define a generalized theory morphism

H : (ΣLComm,EComm) −→ (ΣComm,EComm)

as follows. The sorts, implicit kinds, and operators in ΣComm are mapped identically
to themselves; the sort State is mapped to Conf ; and the sort Label is not mapped
anywhere; the operator { | } is mapped to the variable conf of sort Conf ; finally, the
label constants are not mapped anywhere. Now, let Π0 consist of the predicates enabled-
send and enabled-receive, which in the original theory are defined by the equations

conf snd(n) |= enabled-send = true
conf ch(n) |= enabled-receive = true .

Then, if Comm and LComm denote our rewrite theories, H induces a theoroidal bisim-
ulation (strict) map of Kripke structures

H : K (LComm, [State])Π0 −→ K (Comm, [Conf])Π0 .

Furthermore, in the case of LComm we can extend Π0 to Π by adding the taken-receive
predicate, so that fair termination can be properly specified and verified.

6 Conclusions

We have argued that a categorical approach to the study of Kripke structures and their
generalized notion of simulation is very natural, and have shown this by neatly organizing
them in an institution. Among the many ways that these Kripke structures and simulations
can be formally specified we have proposed rewriting logic, which has proved to be a very
flexible framework for this task. Simulations come in several flavors in rewriting logic
and here we have focused on theoroidal maps; we have shown how they can be organized
together with rewrite theories in a category that reflects that for Kripke structures, and
how they apply to two interesting examples. An open line of research consists in the
study of proof methods and the development of tool support to prove simulations correct;
some preliminary results are reported in [15].

References

1. M. Arrais and J. L. Fiadeiro. Unifying theories in different institutions. In M. Haveraaen,
O. Owe, and O.-J Dahl, editors, Recent Trends in Data Type Specification, COMPASS/ADT,
Selected Papers, volume 1130 of LNCS, pages 81–101. Springer-Verlag, 1996.

Theoroidal Maps as Algebraic Simulations 143

2. M. Barr and C. Wells. Category Theory for Computing Science. Centre de Recherches
Mathématiques, third edition, 1999.

3. P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a rewriting logic
point of view. Theoretical Computer Science, 285(2):155–185, 2002.

4. R. Bruni and J. Meseguer. Generalized rewrite theories. In J. C. M. Baeten, J. K. Lenstra,
J. Parrow, and G. J. Woeginger, editors, Automata, Languages and Programming. ICALP
2003. Proceedings, volume 2719 of LNCS, pages 252–266. Springer-Verlag, 2003.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
6. M. Clavel. The ITP Tool. http://geminis.sip.ucm.es/~clavel/itp, 2004.
7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. F. Quesada.

Maude: Specification and programming in rewriting logic. Theoretical Computer Science,
285(2):187–243, 2002.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. Maude
manual (version 2.1). http://maude.cs.uiuc.edu/manual/, 2004.

9. M. A. Colón and T. E. Uribe. Generating finite-state abstractions of reactive systems using
decision procedures. In A. J. Hu and M. Y. Vardi, editors, Computer Aided Verification.
CAV’98, Proceedings, volume 1427 of LNCS, pages 293–304. Springer-Verlag, 1998.

10. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. In F. Gad-
ducci and U. Montanari, editors, Proceedings Fourth International Workshop on Rewriting
Logic and its Applications, WRLA’02, volume 71 of ENTCS. Elsevier, 2002.

11. K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST Series, 1998.
12. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and program-

ming. Journal of the Association for Computing Machinery, 39(1):95–146, 1992.
13. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grumberg, editor,

Computer Aided Verification. CAV’97, Proceedings, volume 1254 of LNCS, pages 72–83.
Springer-Verlag, 1997.

14. N. Martı́-Oliet and J. Meseguer. Rewriting logic: Roadmap and bibliography. Theoretical
Computer Science, 285(2):121–154, 2002.

15. N. Martı́-Oliet, J. Meseguer, and M. Palomino. Algebraic simulations.
http://maude.cs.uiuc.edu/papers/, 2004.

16. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

17. J. Meseguer. Membership algebra as a logical framework for equational specification. In
F. Parisi-Presicce, editor, Recent Trends in Algebraic Development Techniques, WADT’97,
Selected Papers, volume 1376 of LNCS, pages 18–61. Springer-Verlag, 1998.

18. J. Meseguer. Localized fairness: a rewriting semantics. Paper in preparation, 2004.
19. J. Meseguer, M. Palomino, and N. Martı́-Oliet. Equational abstractions. In F. Baader, editor,

Automated Deduction - CADE-19. 19th International Conference on Automated Deduction,
Proceedings, volume 2741 of LNCS, pages 2–16. Springer-Verlag, 2003.

20. A. Tarlecki, R. M. Burstall, and J. A. Goguen. Some fundamental algebraic tools for the seman-
tics of computation. Part 3: Indexed categories. Theoretical Computer Science, 91(2):239–
264, 1991.

http://geminis.sip.ucm.es/~clavel/itp
http://maude.cs.uiuc.edu/manual/
http://maude.cs.uiuc.edu/papers/

	Introduction
	Prerequisites
	Computational Systems
	Rewriting Logic
	Computational Systems in Rewriting Logic

	Relating Systems
	Stuttering Simulations
	The Temporal Logic Institution

	Theoroidal Maps
	Generalized Theory Morphisms
	Simulation Maps as Generalized Theory Morphisms

	Applications
	Predicate Abstraction
	A Fairness Example

	Conclusions

