Abstract
In this paper we address the problem of comparing and classifying protein surfaces through a kernelized version of the Softassign graph-matching algorithm. Preliminary experiments with random-generated graphs have suggested that weighting the quadratic cost function of Softassign with information coming from the computation of diffusion kernels on graphs attenuate the performance decay with increasing noise levels. Our experimental results show that this approach yields a useful similarity measure to cluster proteins with similar structure, to automatically find prototypical graphs representing families of proteins and also to classify proteins in terms of their distance to these prototypes. We also show that the role of kernel-based information is to smooth the obtained matching fields, which in turn results in noise-free prototype estimation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 47, 409ā443 (2002)
Connolly, M.: Analytical molecular surface calculation. J. Appl. Crys. 16, 548ā558 (1983)
Wolfson, H.J., Lamdan, Y.: Geometric hashing; A general and efficient model-based recognition scheme. In: Proc. of the IEEE Int. Conf. on Computer Vision, pp. 238ā249 (1988)
Nussinov, R., Wolfson, H.J.: Efficient detection of three-dimensional motifs in biological macromolecules by computer vision techniques. Proc. of the Natl. Acad. Sci. USA 88, 10495ā10499 (1991)
Gardiner, E.J., Willet, P., Artymiuk, P.J.: Graph-theoretic techniques for macromolecular docking. J. Chem. Inform. Comput. Sci. 40, 273ā279 (2000)
Pickering, S.J., Bulpitt, A.J., Efford, N., Gold, N.D., Westhead, D.R.: AI-based algorithms for protein surface comparisons. Computers and Chemistry 26, 79ā84 (2001)
Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. on Patt. Anal. and Mach. Int. 18(4), 377ā388 (1996)
Finch, A.M., Wilson, R.C., Hancock, E.: An energy function and continuous edit process for graph matching. Neural Computation 10(7), 1873ā1894 (1998)
Pelillo, M.: Replicator equations, maximal cliques, and graph isomorphism. Neural Computation 11, 1933ā1955 (1999)
Luo, B., Hancock, E.R.: Structural graph matching using the EM algorithm and singular value decomposition. IEEE Trans. on Patt. Anal. and Mach. Int. 23(10), 1120ā1136 (2001)
Lozano, M.A., Escolano, F.: A significant improvement of softassign with diffusion kernels. In: Proc. of the IAPR Workshop on Synt. and Struct. Patt. Rec. LNCS. Springer, Heidelberg (2004) (accepted for publication)
Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: Proc. of the Intl. Conf. on Mach. Learn., pp. 315ā322. Morgan-Kauffman, San Francisco (2002)
Smola, A., Kondor, R.I.: Kernels and regularization on graphs. In: Schƶlkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS, vol. 2777, pp. 144ā158. Springer, Heidelberg (2003)
Chung, F.R.K.: Spectral graph theory. In: Conference Board of the Mathematical Sciences(CBMS), vol. 92. American Mathematical Society, Providence (1997)
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research 28, 235ā242 (2000)
Lozano, M.A., Escolano, F.: EM algorithm for clustering an ensemble of graphs with comb matching. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 52ā67. Springer, Heidelberg (2003)
Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233(1), 123ā138 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lozano, M.A., Escolano, F. (2005). Protein Classification with Kernelized Softassign. In: Brun, L., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2005. Lecture Notes in Computer Science, vol 3434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31988-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-540-31988-7_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25270-2
Online ISBN: 978-3-540-31988-7
eBook Packages: Computer ScienceComputer Science (R0)