Skip to main content

Edit Distance Based Kernel Functions for Attributed Graph Matching

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3434))

Abstract

In this paper we propose the use of a simple kernel function based on the graph edit distance. The kernel function allows us to apply a wide range of statistical algorithms to the problem of attributed graph matching. The function we describe is simple to compute and leads to several convenient interpretations of geometric properties of graphs in their implicit vector space representation. Although the function is not generally positive definite, we show in experiments on real-world data that the kernel approach may result in a significant improvement of the graph matching and classification performance using support vector machines and kernel principal component analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.: Statistical Learning Theory. John Wiley, Chichester (1998)

    MATH  Google Scholar 

  2. Byun, H., Lee, S.: A survey on pattern recognition applications of support vector machines. Int. Journal of Pattern Recognition and Art. Intelligence 17, 459–486 (2003)

    Article  Google Scholar 

  3. Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks 12, 181–202 (2001)

    Article  Google Scholar 

  4. Watkins, C.: Dynamic alignment kernels. In: Smola, A.J., Bartlett, P.L., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 39–50. MIT Press, Cambridge (2000)

    Google Scholar 

  5. Gärtner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Machine Learning 57, 205–232 (2004)

    Article  MATH  Google Scholar 

  6. Haussler, D.: Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10, University of California, Santa Cruz (1999)

    Google Scholar 

  7. Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: Proc. 19th Int. Conf. on Machine Learning, pp. 315–322 (2002)

    Google Scholar 

  8. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proc. 20th Int. Conf. on Machine Learning, pp. 321–328 (2003)

    Google Scholar 

  9. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19, 255–259 (1998)

    Article  MATH  Google Scholar 

  10. Wallis, W., Shoubridge, P., Kraetzl, M., Ray, D.: Graph distances using graph union. Pattern Recognition Letters 22, 701–704 (2001)

    Article  MATH  Google Scholar 

  11. Christmas, W., Kittler, J., Petrou, M.: Structural matching in computer vision using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 749–764 (1995)

    Article  Google Scholar 

  12. Wilson, R., Hancock, E.: Structural matching by discrete relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 634–648 (1997)

    Article  Google Scholar 

  13. Luo, B., Hancock, R.: Structural graph matching using the EM algorithm and singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1120–1136 (2001)

    Article  Google Scholar 

  14. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics 13, 353–363 (1983)

    MATH  Google Scholar 

  15. Myers, R., Wilson, R., Hancock, E.: Bayesian graph edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 628–635 (2000)

    Article  Google Scholar 

  16. Messmer, B., Bunke, H.: A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 493–504 (1998)

    Article  Google Scholar 

  17. Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley, Chichester (2000)

    Google Scholar 

  18. Mansilla, E., Ho, T.: On classifier domains of competence. In: Proc. 17th Int. Conf. on Pattern Recognition, vol. 1, pp. 136–139 (2004)

    Google Scholar 

  19. Schölkopf, B., Smolar, A.: Learning With Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  20. Cover, T.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. on Electronic Computers 14, 326–334 (1965)

    Article  MATH  Google Scholar 

  21. Berg, C., Christensen, J., Ressel, P.: Harmonic Analysis on Semigroups. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  22. Jiang, X., Münger, A., Bunke, H.: On median graphs: Properties, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1144–1151 (2001)

    Article  Google Scholar 

  23. Gill, P., Murray, W., Wright, M.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  24. Watson, C., Wilson, C.: NIST Special Database 4. Fingerprint Database. National Institute of Standards and Technology (1992)

    Google Scholar 

  25. Lumini, A., Maio, D., Maltoni, D.: Inexact graph matching for fingerprint classification. Machine Graphics and Vision, Special Issue on Graph Transformations in Pattern Generation and CAD 8, 231–248 (1999)

    Google Scholar 

  26. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classification. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. du Buf, H., Bayer, M.: Automatic Diatom Identification. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  28. Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and merging and its application to diatom identification. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neuhaus, M., Bunke, H. (2005). Edit Distance Based Kernel Functions for Attributed Graph Matching. In: Brun, L., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2005. Lecture Notes in Computer Science, vol 3434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31988-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31988-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25270-2

  • Online ISBN: 978-3-540-31988-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics