Skip to main content

Graph Seriation Using Semi-definite Programming

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3434))

Abstract

Graph seriation is concerned with placing the nodes of a graph in a serial order so that edge consecutive constraints are generally preserved. It is an important task in network analysis problem in routine and bioinformatics. In this paper we show how the problem of graph seriation can be solved using semi-definite programming (SDP). This is a convex optimisation procedure that has recently found widespread use in computer vision. The main contribution of the paper is to detail the matrix representation needed to cast the graph-seriation problem in a matrix setting so that it can be solved using SDP. We illustrate the utility of the method for graph-matching and graph-clustering, where it is shown to offer advantages to the graph-spectral approach to seriation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Robles-Kelly, A., Hancock, E.R.: Graph matching using spectral seriation. Energy Minimisation Methods in Computer Vision and Pattern Recognition, 517–532 (2003)

    Google Scholar 

  2. Robles-Kelly, A., Hancock, E.R.: Graph Edit Distance from Spectral Seriation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2004) (to appear)

    Google Scholar 

  3. Schellewald, C., Schnőrr, C.: Subgraph Matching with Semidefinite Programming. In: Proceedings IWCIA, International Workshop on Combinatorial Image Analysis, Palermo, Italy (2003)

    Google Scholar 

  4. Alizaheh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J.Optim 5, 13–51 (1995)

    Article  MathSciNet  Google Scholar 

  5. Scott, G., Longuet-Higgins, H.: An algorithm for associating the features of two images. Proceedings of Royal Society of London Series 244, 21–26 (1991)

    Article  Google Scholar 

  6. Wolkowicz, H., Zhao, Q.: Semidefinite Programming relaxation for the graph partitioning problem. Discrete Appl. Math, 461–479 (1999)

    Google Scholar 

  7. Keuchel, J., SchnÅ‘rr, C., Schellewald, C., Cremers, D.: Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming. IEEE Trans. Pattern Analysis and Machine Intelligence 25(11), 1364–1379 (2003)

    Article  Google Scholar 

  8. Atkins, J.E., Boman, E.G., Hendrickson, B.: A Spectral Algorithm for Seriation and the Consecutive Ones Problem. SIAM Journal on Computing 28(1), 297–310 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fujisawa, K., Futakata, Y., Kojima, M., Nakata, K., Yamashita, M.: Sdpa-m user’s manual, http://sdpa.is.titech.ac.jp/SDPA-M

  10. Shapiro, L.S., Brady, J.M.: Feature-based correspondence-an eigenvector approach. Image and Vision Computing 10, 283–288 (1992)

    Article  Google Scholar 

  11. Vandenberghe, L., Boyd, S.: Semidefinite Programming. SIAM Review 38(1), 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Veldhorst, M.: Approximation of the consecutive one matrix augmentation problem. J. Comput. 14, 709–729 (1985)

    MATH  MathSciNet  Google Scholar 

  13. Goemans, M.X., WIlliamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chung, F.R.K.: Spectral Graph Theory. AMS (1997)

    Google Scholar 

  15. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. PAMI 10(5), 695–703 (1988)

    MATH  Google Scholar 

  16. Nayar, S.K., Nene, S.A., Murase, H.: Columbia object image library (coil-100). Technical Report, CUCS-006-96 (1996)

    Google Scholar 

  17. Cox, T.F., Cox, M.A.A.: Multidimensional scaling. Chapman and Hall, Boca Raton (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, H., Hancock, E.R. (2005). Graph Seriation Using Semi-definite Programming. In: Brun, L., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2005. Lecture Notes in Computer Science, vol 3434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31988-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31988-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25270-2

  • Online ISBN: 978-3-540-31988-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics