Skip to main content

Population Training Heuristics

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3448))

Abstract

This work describes a new way of employing problem-specific heuristics to improve evolutionary algorithms: the Population Training Heuristic (PTH). The PTH employs heuristics in fitness definition, guiding the population to settle down in search areas where the individuals can not be improved by such heuristics. Some new theoretical improvements not present in early algorithms are now introduced. An application for pattern sequencing problems is examined with new improved computational results. The method is also compared against other approaches, using benchmark instances taken from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lorena, L.A.N., Furtado, J.C.: Constructive genetic algorithm for clustering problems. Evolutionary Computation 9(3), 309–327 (2001)

    Article  Google Scholar 

  2. Ribeiro Filho, G., Lorena, L.A.N.: A constructive evolutionary approach to school timetabling. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 130–139. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Oliveira, A.C.M., Lorena, L.A.N.: A constructive genetic algorithm for gate matrix layout problems. IEEE Trans. on Computer-Aided Designed of Integrated Circuits and Systems 21(8), 969–974 (2002)

    Article  Google Scholar 

  4. Oliveira, A.C.M., Lorena, L.A.N.: 2-opt population training for minimization of open stack problem. In: Bittencourt, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 313–323. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Oliveira, A.C.M., Lorena, L.A.N.: Real-coded evolutionary approaches to unconstrained numerical optimization. In: Abe, J.M., da Silva Filho, J.I. (eds.) Advances in Logic, Artificial Intelligence and Robotics, pp. 10–15 (2002)

    Google Scholar 

  6. Reeves, C.R.: Landscapes, operators and heuristic search. In: Annals of Operations Research, vol. 86, pp. 473–490 (1999)

    Google Scholar 

  7. Fink, A., Voss, S.: Applications of modern heuristic search methods to pattern sequencing problems. Computers and Operations Research 26(1), 17–34 (1999)

    Article  MATH  Google Scholar 

  8. Golumbic, M.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  9. Möhring, R.: Graph problems related to gate matrix layout and PLA folding. Computing 7, 17–51 (1990)

    Google Scholar 

  10. Kashiwabara, T., Fujisawa, T.: NP-Completeness of the problem of finding a minimum clique number interval graph containing a given graph as a subgraph. In: Proc. Symposium of Circuits and Systems (1979)

    Google Scholar 

  11. Linhares, A.: Industrial pattern sequencing problems: some complexity results and new local search models. Doctoral Thesis, INPE, S. José dos Campos, Brazil (2002)

    Google Scholar 

  12. Faggioli, E., Bentivoglio, C.A.: Heuristic and exact methods for the cutting sequencing problem. European Journal of Operational Research 110, 564–575 (1998)

    Article  MATH  Google Scholar 

  13. Syswerda, G. (ed.): Schedule optimization using genetic algorithms. Handbook of Genetic Algorithms, pp. 332–349. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  14. Mendes, A., Linhares, A.: A multiple population evolutionary approach to gate matrix layout. Int. Journal of Systems Science, Taylor & Francis Eds. 35(1), 13–23 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oliveira, A.C.M., Lorena, L.A.N. (2005). Population Training Heuristics. In: Raidl, G.R., Gottlieb, J. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2005. Lecture Notes in Computer Science, vol 3448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31996-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31996-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25337-2

  • Online ISBN: 978-3-540-31996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics