Abstract
We describe how the standard genotype-phenotype mapping process of Grammatical Evolution (GE) can be enhanced with an attribute grammar to allow GE to operate as a decoder-based Evolutionary Algorithm (EA). Use of an attribute grammar allows GE to maintain context-sensitive and semantic information pertinent to the capacity constraints of the 01 Multiconstrained Knapsack Problem (MKP). An attribute grammar specification is used to perform decoding similar to a first-fit heuristic. The results presented are encouraging, demonstrating that GE in conjunction with attribute grammars can provide an improvement over the standard context-free mapping process for problems in this domain.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Martello, S., Toth, P.: Knapsack Problems. J. Wiley & Sons, Chichester (1990)
Gottlieb, J.: Permutation-Based Evolutionary Algorithms for Multidimensional Knapsack Problem. In: Proc. of ACM Symp. on Applied Computing (2000)
Raidl, Günther, R., Gottlieb, J.: Characterizing Locality in Decoder-Based EAs for the Multidimensional Knapsack Problem. In: 4th European Conference on Artificial Evolution, pp. 38–52. Springer, Heidelberg (1999)
Raidl, Günther, R., Gottlieb, J.: The Effects of Locality on the Dynamics of Decoder-Based Evolutionary Search. In: Proc. of the Genetic and Evolutionary Computation Conference, p. 787. Morgan Kaufmann, San Francisco (1999)
Raidl, Günther, R.: An Improved Genetic Algorithm for the Multiconstrained 0-1 Knapsack Problem. In: Proc of 1998 IEEE Congress on Evolutionary Computation, pp. 207–211 (1998)
Raidl, Günther, R., Gottlieb, J.: On the importance of phenotypic duplicate elimination in decoder-based evolutionary algorithms. In: Proc. of the Genetic and Evolutionary Computation Conference, Late-Breaking Papers, pp. 204–211 (1999)
Hinterding, R.: Mapping, Order-Independant Genes and the Knapsack Problem. In: Proc. 1st IEEE Int. Conf. on Evolutionary Computation, pp. 13–17 (1994)
Hinterding, R.: Representation, Constraint Satisfaction and the Knapsack Problem. In: Proc. of 1999 IEEE Congress on EC, pp. 1286–1292 (1999)
Gottlieb, J.: Evolutionary Algorithms for Multidimensional Knapsack Problems: the Relevance of the Boundary of the Feasible Region. In: Proc. of the Genetic and Evolutionary Computation Conference, p. 787. Morgan Kaufman, San Francisco (1999)
Gottlieb, J.: On the Effectivity of Evolutionary Algorithms for the Multidimensional Knapsack Problems. In: Proc. of Artificial Evolution. LNCS, Springer, Heidelberg (1999)
Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics 4, 63–86 (1998)
Raidl, Günther, R.: Weight-Codings in a Genetic Algorithm for the Multiconstraint Knapsack Problem. In: Proc. of 1999 IEEE Congress on Evolutionary Computation, pp. 596–603 (1999)
Khuri, S., Back, T., Heitkotter, J.: The zero/one multiple knapsack problem and genetic algorithms. In: Deaton, E., et al. (eds.) Proc. of the 1994 ACM symposium of Applied Computation, pp. 188–193. ACM Press, New York (1994)
Olsen, A.L.: Penalty Functions and the Knapsack Problems. In: Proc. of the 1st Int. Conf. on Evolutionary Computation, pp. 559–564 (1994)
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2003)
Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)
Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco (1998)
Knuth, D.E.: Semantics of Context-Free Languages. In: Mathematical Systems Theory, vol. 2(2). Springer, Heidelberg (1968)
O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving Programs in Grammatical Evolution. PhD thesis, University of Limerick (2001)
O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Trans. Evolutionary Computation 5(4) (2001)
Ryan, C., Collins, J.J., O’Neill, M.: Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Proc. of the First European Workshop on GP, pp. 83–95. Springer, Heidelberg (1998)
Beasley, J.E.: OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)
Cotta, C., Troya, J.M.: A Hybrid Genetic Algorithm for the 0-1 Multiple Knapsack Problem. In: Artificial Neural Nets and Genetic Algorithms, vol. 3, pp. 251–255. Springer, Heidelberg (1998)
O’Neill, M., Cleary, R., Nikolov, N.: Solving Knapsack Problems with Attribute Grammars. In: Proc. of the Grammatical Evolution Workshop (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cleary, R., O’Neill, M. (2005). An Attribute Grammar Decoder for the 01 MultiConstrained Knapsack Problem. In: Raidl, G.R., Gottlieb, J. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2005. Lecture Notes in Computer Science, vol 3448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31996-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-31996-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25337-2
Online ISBN: 978-3-540-31996-2
eBook Packages: Computer ScienceComputer Science (R0)