Abstract
The multi-objective quadratic assignment problem (mQAP) is an non-deterministic polynomial-time complete (NPC) problem with many real-world applications. The application addressed in this paper is the minimization of communication flows in a heterogenous mix of Organic Air Vehicles (OAV). A multi-objective approach to solving the general mQAP for this OAV application is developed. The combinatoric nature of this problem calls for a stochastic search algorithm; moreover, two linkage learning algorithms, the multi-objective fast messy genetic algorithm (MOMGA-II) and MOMGA-IIa, are compared. Twenty-three different problem instances having three different sizes (10, 20, and 30) plus two and three objectives are solved. Results indicate that the MOMGA-IIa resolves all pareto optimal points for problem instances < 20.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burkard, R.E., Karisch, S.E., Rendl, F.: A quadratic assignment problem library. Journal of Global Optimization, 391–403 (1997)
Çela, E.: The Quadratic Assignment Problem - Theory and Algorithms. Kluwer Academic Publishers, Boston (1998)
Day, R.O.: A multiobjective approach applied to the protein structure prediction problem. Ms thesis, Air Force Institute of Technology, Sponsor: AFRL/Material Directorate (March 2002)
Day, R.O., Kleeman, M.P., Lamont, G.B.: Solving the Multi-objective Quadratic Assignment Problem Using a fast messy Genetic Algorithm. In: Congress on Evolutionary Computation (CEC 2003), Piscataway, New Jersey, December 2003, vol. 1, pp. 2277–2283. IEEE Service Center, Los Alamitos (2003)
Day, R.O., Lamont, G.B.: Multi-objective fast messy genetic algorithm solving deception problems. Congress on Evolutionary Computation 4, 1502–1509 (2004)
Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, University of Illinois at Urbana-Champaign, pp. 416–423. Morgan Kauffman Publishers, San Francisco (1993)
Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the quadratic assignment problems. Journal of the Operational Research Society 50, 167–176 (1999)
Hahn, P., Hall, N., Grant, T.: A branch-and bound algorithm for the quadratic assignment problem based on the hungarian method. European Journal of Operational Research (August 1998)
Horng, J.-T., Chen, C.-C., Liu, B.-J., Kao, C.-Y.: Resolution of quadratic assignment problems using an evolutionary algorithm. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 2, pp. 902–909. IEEE, Los Alamitos (2000)
Mark, P.: Kleeman. Optimization of heterogeneous uav communications using the multiobjective quadratic assignment problem. Ms thesis, Air Force Institute of Technology (March 2004), Sponsor AFRL
Knowles, J., Corne, D.: Towards Landscape Analyses to Inform the Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem. In: Abraham, A., del Solar, J.R., Koppen, M. (eds.) Soft Computing Systems: Design, Management and Applications, pp. 271–279. IOS Press, Amsterdam (2002)
Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003)
Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: An analytical survey for the quadratic assignment problem. Technical report, Council for the Scientific and Technological Development, of the Brazilian gov (2004)
López-Ibáñez, M., Paquete, L., Stützle, T.: On the design of ACO for the biobjective quadratic assignment problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 214–225. Springer, Heidelberg (2004)
Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment problem. IEEE Transactions on Knowledge and Data Engineering 11, 769–778 (1999)
Merz, P., Freisleben, B.: A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, pp. 1999–2070. IEEE, Los Alamitos (1999)
Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Transactions on Evolutionary Computation 4, 337–352 (2000)
Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: An experimental study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, Springer, Heidelberg (2004) (©Springer Verlag)
Stntzle, T.: Iterated local search for the quadratic assignment problem. Technical Report AIDA-99-03 (1999)
Taillard, E.D.: Comparison of iterative searches for the quadratic assignment problem. Location science 3, 87–105 (1995)
Zydallis, J.B.: Explicit Building-Block Multiobjective Genetic Algorithms: Theory, Analysis, and Development. Dissertation, Air Force Institute of Technology, AFIT/ENG, BLDG 642, 2950 HOBSON WAY, WPAFB (Dayton) OH 45433-7765 (February 2002)
Zydallis, J.B., Van Veldhuizen, D.A., Lamont, G.B.: A Statistical Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA–II. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 226–240. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Day, R.O., Lamont, G.B. (2005). Multiobjective Quadratic Assignment Problem Solved by an Explicit Building Block Search Algorithm – MOMGA-IIa. In: Raidl, G.R., Gottlieb, J. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2005. Lecture Notes in Computer Science, vol 3448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31996-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-31996-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25337-2
Online ISBN: 978-3-540-31996-2
eBook Packages: Computer ScienceComputer Science (R0)