Abstract
In this paper, we describe an approach to learning expressive performance rules from monophonic Jazz standards recordings by a skilled saxophonist. We use a melodic transcription system which extracts a set of acoustic features from the recordings producing a melodic representation of the expressive performance played by the musician. We apply genetic algorithms to this representation in order to induce rules of expressive music performance. The rules collected during different runs of our system are of musical interest and have a good prediction accuracy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R.T.: Mining association rules between sets of items in large databases. In: International Conference on Management of Data, pp. 207–216. ACM, New York (1993)
Van Baelen, E., De Raedt, L.: Analysis and Prediction of Piano Performances Using Inductive Logic Programming. In: International Conference in Inductive Logic Programming, pp. 55–71 (1996)
Biles, J.A.: GenJam: A genetic algorithm for generating Jazz solos. In: ICMC Proceedings 1994 (1994)
Dahlstedt, P., Nordahl, M.: Living Melodies: Coevolution of Sonic Communication. In: First Iteration Conference on Generative Processes in the Electronic Arts, Melbourne, Australia, December 1-3 (1999)
Dovey, M.J.: Analysis of Rachmaninoff’s Piano Performances Using Inductive Logic Programming. In: European Conference on Machine Learning. Springer, Heidelberg (1995)
De Jong, K.A., et al.: Using Genetic Algorithms for Concept Learning. Machine Learning 13, 161–188 (1993)
Friberg, A.: A Quantitative Rule System for Musical Performance. PhD Thesis, KTH, Sweden (1995)
Gabrielsson, A.: The performance of Music. In: Deutsch, D. (ed.) The Psychology of Music, 2nd edn. Academic Press, London (1999)
The GAlib system, lancet.mit.edu/ga
Gómez, E.: Melodic Description of Audio Signals for Music Content Processing. Doctoral Pre-Thesis Work, UPF, Barcelona (2002)
Gómez, E., Gouyon, F., Herrera, P., Amatriain, X.: Using and enhancing the current MPEG-7 standard for a music content processing tool. In: Proceedings of the 114th Audio Engineering Society Convention (2003)
Gómez, E., Grachten, M., Amatriain, X., Arcos, J.: Melodic characterization of monophonic recordings for expressive tempo transformations. In: Stockholm Music Acoustics Conference (2003)
Grachten, M., Luis Arcos, J., Lopez de Mantaras, R.: Evolutionary Optimization of Music Performance Annotation (2004)
Holland, J.H.: Adaptation in Natural and Srtificial Systems. University of Michigan Press (1975)
Horner, A., Goldberg: Genetic Algorithms and Computer-Assisted Music Composition. In: Proceedings of the 1991 International Computer Music Conference, pp. 479–482 (1991)
Igarashi, S., Ozaki, T., Furukawa, K.: Respiration Reflecting Musical Expression: Analysis of Respiration during Musical Performance by Inductive Logic Programming. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS (LNAI), vol. 2445, p. 94. Springer, Heidelberg (2002)
Klapuri, A.: Sound Onset Detection by Applying Psychoacoustic Knowledge. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP (1999)
Maher, R.C., Beauchamp, J.W.: Fundamental frequency estimation of musical signals using a two-way mismatch procedure. Journal of the Acoustic Society of America 95, 2254–2263 (1994)
McNab, R.J., LI Smith, A., Witten, I.H.: Signal Processing for Melody Transcription, SIG working paper, vol. 95-22 (1996)
Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
Morales, E.: PAL: A Pattern-Based First-Order Inductive System. Machine Learning 26, 227–252 (1997)
Phon-Amnuaisuk, S., Wiggins, A.,G.: The Four-Part Harmonisation Problem: A comparison between Genetic Algorithms and a Rule-Based System (1999)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Ramirez, R., Hazan, A., Gómez, E., Maestre, E.: Understanding Expressive Transformations in Saxophone Jazz Performances Using Inductive Machine Learning. In: Sound and Music Computing 2004, IRCAM, Paris (2004)
Ramirez, R., Hazan, A., Gómez, E., Maestre, E.: A Machine Learning Approach to Expressive Performance in Jazz Standards MDM/KDD 2004, Seattle, WA, USA (2004)
Repp, B.H.: Diversity and Commonality in Music Performance: an Analysis of Timing Microstructure in Schumann’s ‘Traumerei’. Journal of the Acoustical Society of America 104 (1992)
Todd, N.: The Dynamics of Dynamics: a Model of Musical Expression. Journal of the Acoustical Society of America 91 (1992)
Tokui, N., Iba, H.: Music Composition with Interactive Evolutionary Computation (2000)
Widmer, G.: Machine Discoveries: A Few Simple, Robust Local Expression Principles. Journal of New Music Research 31(1), 37–50 (2002)
Widmer, G.: In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project (Invited paper). In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 13–32. Springer, Heidelberg (2002)
Widmer, G.: Discovering Strong Principles of Expressive Music Performance with the PLCG Rule Learning Strategy. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, p. 552. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramirez, R., Hazan, A. (2005). Understanding Expressive Music Performance Using Genetic Algorithms. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_51
Download citation
DOI: https://doi.org/10.1007/978-3-540-32003-6_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25396-9
Online ISBN: 978-3-540-32003-6
eBook Packages: Computer ScienceComputer Science (R0)