Skip to main content

A New Time-Dependent Complexity Reduction Method for Biochemical Systems

  • Chapter
Transactions on Computational Systems Biology I

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 3380))

Abstract

Systems biology aims at an understanding of increasingly large and complex cellular systems making use of computational approaches, e.g. numerical simulations. The size and complexity of the underlying biochemical reaction networks call for methods to speed up simulations and/or dissect the biochemical network into smaller subsystems which can be studied independently. Both goals can be achieved by so-called complexity reduction algorithms. However, existing complexity reduction approaches for biochemical reaction networks are mostly based on studying the steady state behavior of a system and/or are based on heuristics. Given the fact that many complex biochemical systems display highly nonlinear dynamics and that this dynamics plays a crucial role in the functioning of the organism, a new methodology has to be developed. Therefore, we present a new complexity reduction method which is time-dependent and suited not only for steady states, but for all possible dynamics of a biochemical system. It makes use of the evolution of the different time–scales in the system, allowing to reduce the number of equations necessary to describe the system which is speeding up the computation time. In addition, it is possible to study the way different variables/metabolites contribute to the reduced equation system which indicates how strongly they interact and couple. In the extreme case of variables decoupling in a specific state, the method allows the complete dissection of the system resulting in subsystems that can be studied in isolation. The whole method provides a systematic tool for an automated complexity reduction of arbitrary biochemical reaction networks. With the aid of a specific example, the oscillatory peroxidase-oxidase system, we show that coupling of time–scales depends heavily on the specific dynamics of the system. Therefore, neither computational improvement nor systematic understanding can be achieved by studying these aspects solely under steady state conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002), References therein

    Google Scholar 

  2. Kauffman, K.J., Pajerowski, J.D., Jamshidi, N., Palsson, B.O., Edwards, J.E.: Description and analysis of metabolic connectivity and dynamics in the human red blood cell. Biophys. J. 83, 646–662 (2002)

    Article  Google Scholar 

  3. Price, N.D., Reed, J.L., Papin, J.A., Famili, I., Palsson, B.O.: Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices. Biophys. J. 84, 794–804 (2003)

    Article  Google Scholar 

  4. Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I., Dandekar, T.: Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 18, 351–361 (2002)

    Article  Google Scholar 

  5. Holme, P., Huss, M., Jeong, H.: Subnetwork hierarchies of biochemical pathways. Bioinformatics 19, 532–538 (2003)

    Article  Google Scholar 

  6. Berridge, M.J., Bootman, M.D., Lipp, P.: Calcium - a life and death signal. Nature 395, 645–648 (1998)

    Article  Google Scholar 

  7. Petty, H.R., Worth, R.G., Kindzelskii, A.L.: Imaging sustained dissipative patterns in the metabolism of individual cells. Phys. Rev. Lett. 84, 2754–2757 (2000)

    Article  Google Scholar 

  8. Duysens, L.N.M., Amesz, J.: Fluorescence sprectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim. Biophys. Acta 24, 19–26 (1957)

    Article  Google Scholar 

  9. Frenkel, R.: Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts.I. Effect of modifiers of phosphofructokinase activity. Arch. Biochem. Biophys. 125, 151–156 (1968)

    Article  Google Scholar 

  10. Scheeline, A., Olson, D.L., Williksen, E.P., Horras, G.A., Klein, M.L., Larter, R.: The peroxidase-oxidase oscillator and its constituent chemistries. Chem. Rev. 97, 739–756 (1997)

    Article  Google Scholar 

  11. Bronnikova, T.V., Fed’kina, V.R., Schaffer, W.M., Olsen, L.F.: Period-doubling bifurcations and chaos in a detailed model of the peroxidase-oxidase reaction. J. Phys. Chem. 99, 9309–9312 (1995)

    Article  Google Scholar 

  12. Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of chemical reaction systems. Chem. Rev. 98, 391–408 (1998)

    Article  Google Scholar 

  13. Tomlin, A.S., Turanyi, T., Pilling, M.J.: Mathematical tools for the construction, investigation and reduction of combustion mechanisms. In: Pilling, M.J. (ed.) Low Temperature Combustion and Autoignition, pp. 293–437. Elsevier, Amsterdam (1997)

    Chapter  Google Scholar 

  14. Lam, S.H., Goussis, D.A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26, 461–486 (1994), References therein

    Google Scholar 

  15. Maas, U., Pope, S.B.: Simplifying chemical reaction kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame 88, 239–264 (1992)

    Article  Google Scholar 

  16. Davis, M.J., Skodje, R.T.: Geometric investigation of low-dimensional manifolds in systems approaching equilibrium. J. Chem. Phys. 111, 847–859 (1999)

    Article  Google Scholar 

  17. Skodje, R.T., Davis, M.J.: Geometrical simplification of complex kinetic systems. J. Phys. Chem. A 105, 10356–10365 (2001)

    Article  Google Scholar 

  18. Roussel, M.R., Fraser, S.J.: Invariant manifold methods for metabolic model reduction. Chaos 11, 196–206 (2001)

    Article  MATH  Google Scholar 

  19. Valorani, M., Goussis, D.A.: Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock. J. Comput. Phys. 169, 44–79 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schmidt, D., Blasenbrey, T., Maas, U.: Intrinsic low-dimensional manifolds of strained and unstrained flames. Combustion Theory and Modelling 2, 135–152 (1998)

    Article  MATH  Google Scholar 

  21. Correa, C., Niemann, H., Schramm, B., Warnatz, J.: Reaction mechanisms reduction for higher hydrocarbons by the ILDM method. Proc. Comb. Inst. 28, 1607–1614 (2001)

    Article  Google Scholar 

  22. Voet, D., Voet, J.G.: Biochemistry. Wiley, New York (1990)

    Google Scholar 

  23. Agarwal, P.K., Billeter, S.R., Ravi Rajagopalan, P.T., Benkovic, S.J., Hammes-Schiffer, S.: Network of coupled promoting motions in enzyme catalysis. Proc. Natl. Acad. Sci. 99, 2794–2799 (2002)

    Article  Google Scholar 

  24. Segel, L.A., Slemrod, M.: The Quasi-steady state assumption: a case study in perturbation. SIAM Review 31, 446–477 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Heinrich, R., Schuster, S.: The regulation of cellular systems. Chapman and Hall, New York (1996)

    MATH  Google Scholar 

  26. Reder, C.: Metabolic control theory: a structural approach. J. Theor. Biol. 135, 175–201 (1988)

    Article  MathSciNet  Google Scholar 

  27. Deuflhard, P., Heroth, J.: Dynamic dimension reduction in ODE models. In: Scientific Computing in Chemical Engineering, pp. 29–43. Springer, Berlin (1996)

    Google Scholar 

  28. Golub, G.H., van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  29. Golub, G.H., Wilkinson, J.H.: Ill-conditioned eigensystems and computation of the Jordan canonical form. SIAM review 18, 578–619 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  30. Deuflhard, P., Nowak, U.: Extrapolation Integrators for Quasilinear Implicit ODEs. In: Large Scale Scientific Computing. Progress in Scientific Computing, vol. 7, pp. 37–50. Birkhäuser, Boston (1987)

    Google Scholar 

  31. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LA-PACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  32. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical recipes in FORTRAN 77, 2nd edn. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  33. Thompson, D.R., Larter, R.: Multiple time-scale analysis of two models for the peroxidase-oxidase reaction. Chaos 5, 448–457 (1995)

    Article  Google Scholar 

  34. Hauser, M.J.B., Kummer, U., Larsen, A.Z., Olsen, L.F.: Oscillatory dynamics protect enzymes and possibly cells against toxic intermediates. Faraday Discuss. 120, 215–227 (2001)

    Article  Google Scholar 

  35. Amit, A., Kindzelskii, A.L., Zanoni, J., Jarvis, J.N., Petty, H.R.: Complement deposition on immune complexes reduces the frequencies of metabolic, proteolytic, and superoxide oscillations of migrating neutrophils. Cell. Immunol. 194, 47–53 (1999)

    Article  Google Scholar 

  36. Klann, E., Robertson, E.D., Knapp, L.T., Sweat, J.D.: A role for superoxide in protein kinase C activation and long-term potentiation. J. Biol. Chem. 273, 4516–4522 (1998)

    Article  Google Scholar 

  37. Carafoli, E., Santella, L., Brance, D., Brini, M.: Generation, control, and processing of cellular calcium signals. Crit. Rev. Biochem. Mol. Biol. 36, 107–260 (2001)

    Article  Google Scholar 

  38. Olson, D.L., Williksen, E.P., Scheeline, A.: An experimentally based model of the Peroxidase-NADH biochemical oscillator: an enzyme-mediated chemical switch. J. Am. Chem. Soc. 117, 2–15 (1995); Biol. 36, 107–260 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zobeley, J., Lebiedz, D., Kammerer, J., Ishmurzin, A., Kummer, U. (2005). A New Time-Dependent Complexity Reduction Method for Biochemical Systems. In: Priami, C. (eds) Transactions on Computational Systems Biology I. Lecture Notes in Computer Science(), vol 3380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32126-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32126-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25422-5

  • Online ISBN: 978-3-540-32126-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics